Steps followed:

rm(list=ls(all=TRUE))
#+ libraries
library(data.table)
library(RSienaTest)
library(igraph)
library(sna)
library(sdazar)
library(ggplot2)
gpath <- "/Users/sdaza/Desktop/model/"
folder_output <- "replicates"
source(paste0(gpath,"R/functions/auxiliary-functions.R"))
# compute network statistics
#+ set values
agents <- 200 # define number of agents to create network
iteration <- 1:2 # only two, influence and selection
lab_iteration <- c("Only Influence", "Only Selection")
nwaves <- c(6:9) # very important
max_rep <- 2000
#+ define paths
fpath <- paste0(gpath, "output/", folder_output) # files
fpath
[1] "/Users/sdaza/Desktop/model/output/replicates"
# get files
behavior.files <- list.files(path = fpath, pattern = "behavior")
b <- lapply(paste0(fpath, "/", behavior.files), fread, sep=",")
b <- rbindlist(b)
network.files <- list.files(path = fpath, pattern = "network")
n <- lapply(paste0(fpath, "/", network.files), fread, sep=",")
n <- rbindlist(n)
# categorize behavior variable
b$mybehavior <- cut(b$behavior, breaks = 10, labels = 1:10)
table(b$mybehavior, useNA = "ifany")

      1       2       3       4       5       6       7       8       9      10 
 560466  426152  580220  903571 1282580 1303592  939798  601516  436731  571574 
# loop through iterations
for (j in iteration) {
#+ create variables
lmoranb <- list()
rep <- 1:max_rep
#+ loop through replications
for (h in rep) {
# print(paste0(". . . iteration ", j, " replication ", h))
# extract data
tn <- n[iteration == j & replication == h]
tb <- b[iteration == j & replication == h]
# td <- d[iteration == j & replication == h]
#+ loop to create networks and get behavior
gnet <- list()
net <- list()
attr <- list()
# loop to get objects
for (i in 1:length(nwaves)) {
    t <- as.data.frame(tn[measurement == nwaves[i], 1:2])
    g <- graph.data.frame(t, vertices = 1:agents, directed = TRUE)
    m <- get.adjacency(g, sparse = FALSE)
    gnet[[i]] <- g
    net[[i]] <- m
    attr[[i]] <- tb[measurement == nwaves[i], list(id, mybehavior, radius, tendency)]
}
moranb <- NA
for (i in 1:length(nwaves)) {
  bh <- as.numeric(attr[[i]][, mybehavior])
  rd <- as.numeric(attr[[i]][, radius])
  moranb[i] <- Moran(bh, net[[i]])
}
lmoranb[[h]] <- mean(moranb)
} # end loop through replications
# coefficient of variation per replication
mb <- unlist(lmoranb)
CV <- function(x) (sd(x)/mean(x))
cvs <- list()
for (i in 2:500) { # size of samples
  s <- sample(rep, i, replace = FALSE)
  cvs[[i - 1]] <-  CV(mb[s])
}
cvs <- data.frame(cvs = unlist(cvs), n = 2:500)
print(ggplot(cvs, aes(y = cvs, x = n)) + 
  geom_point() + 
  labs(title = lab_iteration[j], x = "\nSample sizes", y =  "CV\n") + 
  geom_vline(xintercept = 30, linetype = 3))
} # end loop through iterations

Over 200 replicates there are not big gains in the reduction of CV’s behavior autocorrelation.

LS0tCnRpdGxlOiAiUmVwbGljYXRlcyBhbmQgVmFyaWFiaWxpdHkiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KClN0ZXBzIGZvbGxvd2VkOgoKLSBJIHByb2R1Y2VkIDIwMDAgcmVwbGljYXRlcyB1c2luZyBJU0EgdjYgZm9yIHR3byBzY2VuYXJpb3M6IG9ubHkgaW5mbHVlbmNlIGFuZCBvbmx5IHNlbGVjdGlvbi4gCi0gSSBjb21wdXRlZCBhdmVyYWdlIGF1dG9jb3JyZWxhdGlvbiBmb3IgZWFjaCByZXBsaWNhdGUgKDQgd2F2ZXMgb3IgbWVhc3VyZW1lbnRzKQotIEkgZGVmaW5lZCBzYW1wbGVzIHdpdGggbm8gcmVwbGFjZW1lbnQgb2Ygc2l6ZSAqKm4qKi4gCi0gSSBjb21wdXRlZCB0aGUgY29lZmZpY2llbnQgb2YgdmFyaWF0aW9uIChDViA9IHNkL21lYW4pIGZvciBlYWNoIHNhbXBsZSwgdGhlbiBJIHBsb3R0ZWQgQ1YncyBmb3IgZWFjaCBzYW1wbGUgc2l6ZS4gCgoKYGBge3J9CnJtKGxpc3Q9bHMoYWxsPVRSVUUpKQoKIysgbGlicmFyaWVzCmxpYnJhcnkoZGF0YS50YWJsZSkKbGlicmFyeShSU2llbmFUZXN0KQpsaWJyYXJ5KGlncmFwaCkKbGlicmFyeShzbmEpCmxpYnJhcnkoc2RhemFyKQpsaWJyYXJ5KGdncGxvdDIpCgpncGF0aCA8LSAiL1VzZXJzL3NkYXphL0Rlc2t0b3AvbW9kZWwvIgpmb2xkZXJfb3V0cHV0IDwtICJyZXBsaWNhdGVzIgoKc291cmNlKHBhc3RlMChncGF0aCwiUi9mdW5jdGlvbnMvYXV4aWxpYXJ5LWZ1bmN0aW9ucy5SIikpCgojIGNvbXB1dGUgbmV0d29yayBzdGF0aXN0aWNzCgojKyBzZXQgdmFsdWVzCmFnZW50cyA8LSAyMDAgIyBkZWZpbmUgbnVtYmVyIG9mIGFnZW50cyB0byBjcmVhdGUgbmV0d29yawppdGVyYXRpb24gPC0gMToyICMgb25seSB0d28sIGluZmx1ZW5jZSBhbmQgc2VsZWN0aW9uCmxhYl9pdGVyYXRpb24gPC0gYygiT25seSBJbmZsdWVuY2UiLCAiT25seSBTZWxlY3Rpb24iKQpud2F2ZXMgPC0gYyg2OjkpICMgdmVyeSBpbXBvcnRhbnQKbWF4X3JlcCA8LSAyMDAwCgojKyBkZWZpbmUgcGF0aHMKZnBhdGggPC0gcGFzdGUwKGdwYXRoLCAib3V0cHV0LyIsIGZvbGRlcl9vdXRwdXQpICMgZmlsZXMKCiMgZ2V0IGZpbGVzCmJlaGF2aW9yLmZpbGVzIDwtIGxpc3QuZmlsZXMocGF0aCA9IGZwYXRoLCBwYXR0ZXJuID0gImJlaGF2aW9yIikKYiA8LSBsYXBwbHkocGFzdGUwKGZwYXRoLCAiLyIsIGJlaGF2aW9yLmZpbGVzKSwgZnJlYWQsIHNlcD0iLCIpCmIgPC0gcmJpbmRsaXN0KGIpCgpuZXR3b3JrLmZpbGVzIDwtIGxpc3QuZmlsZXMocGF0aCA9IGZwYXRoLCBwYXR0ZXJuID0gIm5ldHdvcmsiKQpuIDwtIGxhcHBseShwYXN0ZTAoZnBhdGgsICIvIiwgbmV0d29yay5maWxlcyksIGZyZWFkLCBzZXA9IiwiKQpuIDwtIHJiaW5kbGlzdChuKQoKIyBjYXRlZ29yaXplIGJlaGF2aW9yIHZhcmlhYmxlCmIkbXliZWhhdmlvciA8LSBjdXQoYiRiZWhhdmlvciwgYnJlYWtzID0gMTAsIGxhYmVscyA9IDE6MTApCnRhYmxlKGIkbXliZWhhdmlvciwgdXNlTkEgPSAiaWZhbnkiKQoKIyBsb29wIHRocm91Z2ggaXRlcmF0aW9ucwoKZm9yIChqIGluIGl0ZXJhdGlvbikgewoKIysgY3JlYXRlIHZhcmlhYmxlcwpsbW9yYW5iIDwtIGxpc3QoKQpyZXAgPC0gMTptYXhfcmVwCgojKyBsb29wIHRocm91Z2ggcmVwbGljYXRpb25zCmZvciAoaCBpbiByZXApIHsKCiMgcHJpbnQocGFzdGUwKCIuIC4gLiBpdGVyYXRpb24gIiwgaiwgIiByZXBsaWNhdGlvbiAiLCBoKSkKCiMgZXh0cmFjdCBkYXRhCnRuIDwtIG5baXRlcmF0aW9uID09IGogJiByZXBsaWNhdGlvbiA9PSBoXQp0YiA8LSBiW2l0ZXJhdGlvbiA9PSBqICYgcmVwbGljYXRpb24gPT0gaF0KIyB0ZCA8LSBkW2l0ZXJhdGlvbiA9PSBqICYgcmVwbGljYXRpb24gPT0gaF0KCiMrIGxvb3AgdG8gY3JlYXRlIG5ldHdvcmtzIGFuZCBnZXQgYmVoYXZpb3IKZ25ldCA8LSBsaXN0KCkKbmV0IDwtIGxpc3QoKQphdHRyIDwtIGxpc3QoKQoKIyBsb29wIHRvIGdldCBvYmplY3RzCmZvciAoaSBpbiAxOmxlbmd0aChud2F2ZXMpKSB7CiAgICB0IDwtIGFzLmRhdGEuZnJhbWUodG5bbWVhc3VyZW1lbnQgPT0gbndhdmVzW2ldLCAxOjJdKQogICAgZyA8LSBncmFwaC5kYXRhLmZyYW1lKHQsIHZlcnRpY2VzID0gMTphZ2VudHMsIGRpcmVjdGVkID0gVFJVRSkKICAgIG0gPC0gZ2V0LmFkamFjZW5jeShnLCBzcGFyc2UgPSBGQUxTRSkKICAgIGduZXRbW2ldXSA8LSBnCiAgICBuZXRbW2ldXSA8LSBtCiAgICBhdHRyW1tpXV0gPC0gdGJbbWVhc3VyZW1lbnQgPT0gbndhdmVzW2ldLCBsaXN0KGlkLCBteWJlaGF2aW9yLCByYWRpdXMsIHRlbmRlbmN5KV0KfQoKbW9yYW5iIDwtIE5BCgpmb3IgKGkgaW4gMTpsZW5ndGgobndhdmVzKSkgewogIGJoIDwtIGFzLm51bWVyaWMoYXR0cltbaV1dWywgbXliZWhhdmlvcl0pCiAgcmQgPC0gYXMubnVtZXJpYyhhdHRyW1tpXV1bLCByYWRpdXNdKQogIG1vcmFuYltpXSA8LSBNb3JhbihiaCwgbmV0W1tpXV0pCn0KCmxtb3JhbmJbW2hdXSA8LSBtZWFuKG1vcmFuYikKCn0gIyBlbmQgbG9vcCB0aHJvdWdoIHJlcGxpY2F0aW9ucwoKIyBjb2VmZmljaWVudCBvZiB2YXJpYXRpb24gcGVyIHJlcGxpY2F0aW9uCm1iIDwtIHVubGlzdChsbW9yYW5iKQoKQ1YgPC0gZnVuY3Rpb24oeCkgKHNkKHgpL21lYW4oeCkpCgpjdnMgPC0gbGlzdCgpCgpmb3IgKGkgaW4gMjo1MDApIHsgIyBzaXplIG9mIHNhbXBsZXMKICBzIDwtIHNhbXBsZShyZXAsIGksIHJlcGxhY2UgPSBGQUxTRSkKICBjdnNbW2kgLSAxXV0gPC0gIENWKG1iW3NdKQp9CgpjdnMgPC0gZGF0YS5mcmFtZShjdnMgPSB1bmxpc3QoY3ZzKSwgbiA9IDI6NTAwKQoKcHJpbnQoZ2dwbG90KGN2cywgYWVzKHkgPSBjdnMsIHggPSBuKSkgKyAKICBnZW9tX3BvaW50KCkgKyAKICBsYWJzKHRpdGxlID0gbGFiX2l0ZXJhdGlvbltqXSwgeCA9ICJcblNhbXBsZSBzaXplcyIsIHkgPSAgIkNWXG4iKSArIAogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IDMwLCBsaW5ldHlwZSA9IDMpKQoKfSAjIGVuZCBsb29wIHRocm91Z2ggaXRlcmF0aW9ucwpgYGAKT3ZlciAyMDAgcmVwbGljYXRlcyB0aGVyZSBhcmUgbm90IGJpZyBnYWlucyBpbiB0aGUgcmVkdWN0aW9uIG9mIENWJ3MgYmVoYXZpb3IgYXV0b2NvcnJlbGF0aW9uLiAK