STOCK MARKET DATA
- We then examine some numerical and graphical summaries of the Smarket data, which is part of the ISLR library.
library (ISLR)
package 㤼㸱ISLR㤼㸲 was built under R version 3.3.3
names(Smarket)
[1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5" "Volume"
[8] "Today" "Direction"
dim(Smarket)
[1] 1250 9
summary(Smarket)
Year Lag1 Lag2 Lag3 Lag4
Min. :2001 Min. :-4.922000 Min. :-4.922000 Min. :-4.922000 Min. :-4.922000
1st Qu.:2002 1st Qu.:-0.639500 1st Qu.:-0.639500 1st Qu.:-0.640000 1st Qu.:-0.640000
Median :2003 Median : 0.039000 Median : 0.039000 Median : 0.038500 Median : 0.038500
Mean :2003 Mean : 0.003834 Mean : 0.003919 Mean : 0.001716 Mean : 0.001636
3rd Qu.:2004 3rd Qu.: 0.596750 3rd Qu.: 0.596750 3rd Qu.: 0.596750 3rd Qu.: 0.596750
Max. :2005 Max. : 5.733000 Max. : 5.733000 Max. : 5.733000 Max. : 5.733000
Lag5 Volume Today Direction
Min. :-4.92200 Min. :0.3561 Min. :-4.922000 Down:602
1st Qu.:-0.64000 1st Qu.:1.2574 1st Qu.:-0.639500 Up :648
Median : 0.03850 Median :1.4229 Median : 0.038500
Mean : 0.00561 Mean :1.4783 Mean : 0.003138
3rd Qu.: 0.59700 3rd Qu.:1.6417 3rd Qu.: 0.596750
Max. : 5.73300 Max. :3.1525 Max. : 5.733000
- We use the cor() function that produces a matrix that conating all of the pairwise correlations among the predictors in a data set.
cor(Smarket)
Error in cor(Smarket) : 'x' must be numeric
cor(Smarket [,-9])
Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume
Year 1.00000000 0.029699649 0.030596422 0.033194581 0.035688718 0.029787995 0.53900647
Lag1 0.02969965 1.000000000 -0.026294328 -0.010803402 -0.002985911 -0.005674606 0.04090991
Lag2 0.03059642 -0.026294328 1.000000000 -0.025896670 -0.010853533 -0.003557949 -0.04338321
Lag3 0.03319458 -0.010803402 -0.025896670 1.000000000 -0.024051036 -0.018808338 -0.04182369
Lag4 0.03568872 -0.002985911 -0.010853533 -0.024051036 1.000000000 -0.027083641 -0.04841425
Lag5 0.02978799 -0.005674606 -0.003557949 -0.018808338 -0.027083641 1.000000000 -0.02200231
Volume 0.53900647 0.040909908 -0.043383215 -0.041823686 -0.048414246 -0.022002315 1.00000000
Today 0.03009523 -0.026155045 -0.010250033 -0.002447647 -0.006899527 -0.034860083 0.01459182
Today
Year 0.030095229
Lag1 -0.026155045
Lag2 -0.010250033
Lag3 -0.002447647
Lag4 -0.006899527
Lag5 -0.034860083
Volume 0.014591823
Today 1.000000000
- The correlations between the lag variables and today’s returns are close to zero. Meaning, there appears to be little correlation between today’s returns and previous days’ returns. The only substantial correlation is between Year and Volume. By plotting the data we see that Volume is increasing over time.
attach(Smarket)
plot(Volume)

- Here, we see that the number of shares traded daily has increased as years have passed by.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCmF1dGhvcjogIkFkaGlzbGFjeSINCi0tLQ0KDQojI1NUT0NLIE1BUktFVCBEQVRBDQoNCg0KPi0gKldlIHRoZW4gZXhhbWluZSBzb21lIG51bWVyaWNhbCBhbmQgZ3JhcGhpY2FsIHN1bW1hcmllcyBvZiB0aGUgU21hcmtldCBkYXRhLCB3aGljaCBpcyBwYXJ0IG9mIHRoZSBJU0xSIGxpYnJhcnkuKg0KDQpgYGB7cn0NCmxpYnJhcnkgKElTTFIpDQpgYGANCg0KYGBge3J9DQpuYW1lcyhTbWFya2V0KQ0KYGBgDQoNCg0KYGBge3J9DQpkaW0oU21hcmtldCkNCmBgYA0KDQoNCmBgYHtyfQ0Kc3VtbWFyeShTbWFya2V0KQ0KYGBgDQoNCg0KPi0gKldlIHVzZSB0aGUgY29yKCkgZnVuY3Rpb24gdGhhdCBwcm9kdWNlcyBhIG1hdHJpeCB0aGF0IGNvbmF0aW5nIGFsbCBvZiB0aGUgcGFpcndpc2UgY29ycmVsYXRpb25zIGFtb25nIHRoZSBwcmVkaWN0b3JzIGluIGEgZGF0YSBzZXQuKg0KDQpgYGB7cn0NCmNvcihTbWFya2V0KQ0KYGBgDQoNCmBgYHtyfQ0KY29yKFNtYXJrZXQgWywtOV0pDQpgYGANCg0KDQo+LSAqVGhlIGNvcnJlbGF0aW9ucyBiZXR3ZWVuIHRoZSBsYWcgdmFyaWFibGVzIGFuZCB0b2RheeKAmXMgcmV0dXJucyBhcmUgY2xvc2UgdG8gemVyby4gTWVhbmluZywgdGhlcmUgYXBwZWFycyB0byBiZSBsaXR0bGUgY29ycmVsYXRpb24gYmV0d2VlbiB0b2RheeKAmXMgcmV0dXJucyBhbmQgcHJldmlvdXMgZGF5c+KAmSByZXR1cm5zLiBUaGUgb25seSBzdWJzdGFudGlhbCBjb3JyZWxhdGlvbiBpcyBiZXR3ZWVuIFllYXIgYW5kIFZvbHVtZS4gQnkgcGxvdHRpbmcgdGhlIGRhdGEgd2Ugc2VlIHRoYXQgVm9sdW1lIGlzIGluY3JlYXNpbmcgb3ZlciB0aW1lLioNCg0KDQpgYGB7cn0NCmF0dGFjaChTbWFya2V0KQ0KYGBgDQoNCg0KYGBge3J9DQpwbG90KFZvbHVtZSkNCmBgYA0KDQo+LSAqSGVyZSwgd2Ugc2VlIHRoYXQgdGhlIG51bWJlciBvZiBzaGFyZXMgdHJhZGVkIGRhaWx5IGhhcyBpbmNyZWFzZWQgYXMgeWVhcnMgaGF2ZSBwYXNzZWQgYnkuKg0K