Gui Larangeira - HW 6 - Random Forests - 05/22/2017
We tried applying RFs to the Credit data from ISLR book, but for some reason the algorithm did not converge. So we are using the same German Credit data once more. We do a 70/30 split between training and testing.
Step 3 Training a simple Random Forest:
model <- randomForest(default ~ . , data = train, ntree=1000, mtry=5)
model <- randomForest(default ~ . , data = train, ntree=1000, mtry=5)
model
Call:
randomForest(formula = default ~ ., data = train, ntree = 1000, mtry = 5)
Type of random forest: classification
Number of trees: 1000
No. of variables tried at each split: 5
OOB estimate of error rate: 24.43%
Confusion matrix:
no yes class.error
no 450 41 0.08350305
yes 130 79 0.62200957
LS0tDQp0aXRsZTogIkNTVUVCIFNUQVRTIDY2MjAgLSBNYWNoaW5lIExlYXJuaW5nIHdpdGggUiAtIFNwcmluZyAyMDE3IC0gUHJvZiBFLiBTdWVzcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyBHdWkgTGFyYW5nZWlyYSAtIEhXIDYgLSBSYW5kb20gRm9yZXN0cyAtIDA1LzIyLzIwMTcNCg0KV2UgdHJpZWQgYXBwbHlpbmcgUkZzIHRvIHRoZSBDcmVkaXQgZGF0YSBmcm9tIElTTFIgYm9vaywgYnV0IGZvciBzb21lIHJlYXNvbiB0aGUgYWxnb3JpdGhtIGRpZCBub3QgY29udmVyZ2UuIFNvIHdlIGFyZSB1c2luZyB0aGUgc2FtZSBHZXJtYW4gQ3JlZGl0IGRhdGEgb25jZSBtb3JlLiBXZSBkbyBhIDcwLzMwIHNwbGl0IGJldHdlZW4gdHJhaW5pbmcgYW5kIHRlc3RpbmcuDQoNCiMjIyMgU3RlcCAzIFRyYWluaW5nIGEgc2ltcGxlIFJhbmRvbSBGb3Jlc3Q6DQoNCmBgYHtyfQ0KY3JlZGl0IDwtIHJlYWQuY3N2KCJodHRwOi8vd3d3LnNjaS5jc3VlYXN0YmF5LmVkdS9+ZXN1ZXNzL2NsYXNzZXMvU3RhdGlzdGljc182NjIwL1ByZXNlbnRhdGlvbnMvbWwxMC9jcmVkaXQuY3N2IikNCnRhYmxlKGNyZWRpdCRkZWZhdWx0KQ0KDQpzZXQuc2VlZCgxMjMpDQpzYW1wIDwtIHNhbXBsZShucm93KGNyZWRpdCksIDAuNyAqIG5yb3coY3JlZGl0KSkNCnRyYWluIDwtIGNyZWRpdFtzYW1wLCBdDQp0ZXN0IDwtIGNyZWRpdFstc2FtcCwgXQ0KDQpsaWJyYXJ5KHJhbmRvbUZvcmVzdCkNCm1vZGVsIDwtIHJhbmRvbUZvcmVzdChkZWZhdWx0IH4gLiAsIGRhdGEgPSB0cmFpbiwgbnRyZWU9MTAwMCwgbXRyeT01KQ0KbW9kZWwNCmBgYA0KDQojIyMjIFN0ZXAgNCAtIEV2YWx1YXRpbmcgTW9kZWwgUGVyZm9ybWFuY2UNCg0KQWZ0ZXIgdHJhaW5pbmcgdGhlIG1vZGVsLCB3ZSBldmFsdWF0ZSBpdCdzIHBlcmZvcm1hbmNlIG9uIHRoZSB0ZXN0IGRhdGE6DQoNCmBgYHtyfQ0KcHJlZCA8LSBwcmVkaWN0KG1vZGVsLCBuZXdkYXRhID0gdGVzdCkNCnRhYmxlKHByZWQsIHRlc3QkZGVmYXVsdCkNCnN1bShwcmVkPT10ZXN0JGRlZmF1bHQpIC8gbnJvdyh0ZXN0KQ0KDQpgYGANCg0KQSBhY2N1cmFjeSBvZiAwLjc2IGxlYXZlcyByb29tIGZvciBpbXByb3ZlbWVudCBzbyB3ZSBmb2xsb3cgb24gdG8gc3RlcCA1LCBib29zdGluZyBhbmQgdHVuaW5nIHRoZSBSRiAoY291bGQgYmUgUmFkaW8gRnJlcXVlbmN5IGJ1dCBtZWFuaW5nIFJhbmQgRm9yZXN0ISkNCg0KIyMjIyBTdGVwIDUgLSBJbXByb3ZpbmcgTW9kZWwgUGVyZm9ybWFuY2UNCg0KV2UgdXNlIENyb3NzLVZhbGlkYXRpb24gZm9yIHR1bmluZyBhbmQgQzUuMCBmb3IgYm9vc3RpbmcuDQoNCmBgYHtyIH0NCiMgc3VtbWFyeSBvZiB0dW5pbmcgcmVzdWx0cw0KbGlicmFyeShjYXJldCkNCmN0cmwgPC0gdHJhaW5Db250cm9sKG1ldGhvZCA9ICJyZXBlYXRlZGN2IiwNCiAgICAgICAgICAgICAgICAgICAgIG51bWJlciA9IDEwLCByZXBlYXRzID0gMTApDQoNCg0KIyBhdXRvLXR1bmUgYSBib29zdGVkIEM1LjAgZGVjaXNpb24gdHJlZQ0KZ3JpZF9jNTAgPC0gZXhwYW5kLmdyaWQoLm1vZGVsID0gInRyZWUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgLnRyaWFscyA9IGMoMTAsIDIwLCAzMCwgNDApLA0KICAgICAgICAgICAgICAgICAgICAgICAgLndpbm5vdyA9ICJGQUxTRSIpDQoNCnNldC5zZWVkKDMwMCkNCm1fYzUwIDwtIHRyYWluKGRlZmF1bHQgfiAuLCBkYXRhID0gdHJhaW4sIG1ldGhvZCA9ICJDNS4wIiwNCiAgICAgICAgICAgICAgIG1ldHJpYyA9ICJLYXBwYSIsIHRyQ29udHJvbCA9IGN0cmwsDQogICAgICAgICAgICAgICB0dW5lR3JpZCA9IGdyaWRfYzUwKQ0KbV9jNTANCg0KYGBgDQoNCkFuZCBhZ2FpbiB3ZSBsb29rIHRvIGV2YWx1YXRlIHRoZSBwZXJmb3JtYW5jZSBvZiB0aGUgdHJhaW5lZCBtb2RlbCBvbiB0aGUgdGVzdCBkYXRhOg0KYGBge3J9DQpwcmVkIDwtIHByZWRpY3QobV9jNTAsIG5ld2RhdGEgPSB0ZXN0KQ0KdGFibGUocHJlZCwgdGVzdCRkZWZhdWx0KQ0Kc3VtKHByZWQ9PXRlc3QkZGVmYXVsdCkgLyBucm93KHRlc3QpDQoNCmBgYA0KQWZ0ZXIgYSBwcmV0dHkgbGVuZ2h0eSBudW1iZXItY3J1bmNoaW5nIHNlc3Npb24sIG91ciByZXN1bHRzIGhhdmUgYWN0dWFsbHkgd29yc2VuZWQhDQoNCg0K