Adiponectin versus Phenotype (0=Control, 1=Case)

## 
##  Welch Two Sample t-test
## 
## data:  Adiponectin, ng/ml by factor(Phenotype)
## t = 2.0083, df = 76.821, p-value = 0.04813
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##    16.82847 3964.77211
## sample estimates:
## mean in group 0 mean in group 1 
##       10560.685        8569.885
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  Adiponectin, ng/ml by factor(Phenotype)
## W = 2291.5, p-value = 0.03742
## alternative hypothesis: true location shift is not equal to 0

P values from both tests are < 0.05.

## 
## Call:
## lm(formula = `Adiponectin, ng/ml` ~ factor(Phenotype) + `GA in weeks`, 
##     data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8758.4 -4071.2  -906.5  3685.9 13487.6 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)  
## (Intercept)          6271.1     3800.3   1.650   0.1014  
## factor(Phenotype)1  -1849.1      979.6  -1.888   0.0614 .
## `GA in weeks`         387.7      339.8   1.141   0.2561  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5191 on 128 degrees of freedom
## Multiple R-squared:  0.04119,    Adjusted R-squared:  0.02621 
## F-statistic: 2.749 on 2 and 128 DF,  p-value: 0.06775
## 
## Call:
## lm(formula = `Adiponectin, ng/ml` ~ factor(Phenotype) + bmi, 
##     data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10758.7  -3550.2   -530.8   3443.1  11720.5 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         19888.0     2633.1   7.553 7.09e-12 ***
## factor(Phenotype)1  -1221.4      954.3  -1.280  0.20292    
## bmi                  -376.6      104.2  -3.615  0.00043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4969 on 128 degrees of freedom
## Multiple R-squared:  0.1212, Adjusted R-squared:  0.1075 
## F-statistic: 8.825 on 2 and 128 DF,  p-value: 0.0002567
## 
## Call:
## lm(formula = `Adiponectin, ng/ml` ~ factor(Phenotype) + `GA in weeks` + 
##     bmi, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10227.8  -3356.5   -556.6   3308.7  12537.1 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         15900.7     4520.9   3.517 0.000606 ***
## factor(Phenotype)1  -1099.3      960.3  -1.145 0.254454    
## `GA in weeks`         352.8      325.3   1.085 0.280159    
## bmi                  -373.2      104.1  -3.584 0.000481 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4966 on 127 degrees of freedom
## Multiple R-squared:  0.1293, Adjusted R-squared:  0.1087 
## F-statistic: 6.284 on 3 and 127 DF,  p-value: 0.0005205

After adjusting for BMI and/or Gastational age, the Phenotype effect becomes non-significant.

## Area under the curve: 0.613

##    threshold  specificity  sensitivity 
## 1.028655e+04 4.943820e-01 7.380952e-01
##              dat$`Adiponectin, ng/ml` < 10287
## dat$Phenotype FALSE TRUE
##             0    44   45
##             1    11   31

Area under the curve (AUC) for Adiponectin is 0.613. Best thresthold is “Adiponectin < 10287” as case (Phenotype = 1). The corresponding sensitivity is 0.738 and specificity is 0.494.

PEDF versus Phenotype (0=Control, 1=Case)

## 
##  Welch Two Sample t-test
## 
## data:  PEDF, ug/ml by factor(Phenotype)
## t = 0.50533, df = 70.048, p-value = 0.6149
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.657087  2.781787
## sample estimates:
## mean in group 0 mean in group 1 
##        23.58957        23.02722
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  PEDF, ug/ml by factor(Phenotype)
## W = 1924, p-value = 0.7881
## alternative hypothesis: true location shift is not equal to 0

P values from both tests are not significant.

## 
## Call:
## lm(formula = `PEDF, ug/ml` ~ factor(Phenotype) + `GA in weeks`, 
##     data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.7008  -3.3717  -0.0519   3.9183  13.4345 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        22.65384    4.12349   5.494 2.04e-07 ***
## factor(Phenotype)1 -0.53144    1.06295  -0.500    0.618    
## `GA in weeks`       0.08457    0.36874   0.229    0.819    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.632 on 128 degrees of freedom
## Multiple R-squared:  0.002626,   Adjusted R-squared:  -0.01296 
## F-statistic: 0.1685 on 2 and 128 DF,  p-value: 0.8451
## 
## Call:
## lm(formula = `PEDF, ug/ml` ~ factor(Phenotype) + bmi, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.8368  -3.5279   0.4128   3.6754  13.1650 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         15.3728     2.8913   5.317 4.55e-07 ***
## factor(Phenotype)1  -1.2402     1.0479  -1.183  0.23883    
## bmi                  0.3317     0.1144   2.901  0.00439 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.457 on 128 degrees of freedom
## Multiple R-squared:  0.06375,    Adjusted R-squared:  0.04912 
## F-statistic: 4.358 on 2 and 128 DF,  p-value: 0.01476
## 
## Call:
## lm(formula = `PEDF, ug/ml` ~ factor(Phenotype) + `GA in weeks` + 
##     bmi, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.6551  -3.5699   0.3719   3.7730  13.0527 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## (Intercept)         14.0652     4.9852   2.821  0.00555 **
## factor(Phenotype)1  -1.2001     1.0589  -1.133  0.25919   
## `GA in weeks`        0.1157     0.3587   0.323  0.74757   
## bmi                  0.3328     0.1148   2.899  0.00442 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.476 on 127 degrees of freedom
## Multiple R-squared:  0.06452,    Adjusted R-squared:  0.04242 
## F-statistic:  2.92 on 3 and 127 DF,  p-value: 0.03668

P values are not significant.

## Area under the curve: 0.5147

##   threshold specificity sensitivity 
##  26.1258025   0.3707865   0.7142857
##              dat$`PEDF, ug/ml` < 26.125
## dat$Phenotype FALSE TRUE
##             0    33   56
##             1    12   30

Area under the curve (AUC) for PEDF is 0.5147. Best thresthold is “PEDF < 26.12” as case (Phenotype = 1). The corresponding sensitivity is 0.714 and specificity is 0.371.

combined figure

## Area under the curve: 0.6212

As we can see, the ROC curve of PEDF is almost always below Adiponectin. The combined AUC is 0.621.