Adiponectin versus Phenotype (0=Control, 1=Case)

## 
##  Shapiro-Wilk normality test
## 
## data:  dat$Adiponectin
## W = 0.97262, p-value = 0.009439
## 
##  Welch Two Sample t-test
## 
## data:  Adiponectin by factor(Phenotype)
## t = 2.0083, df = 76.821, p-value = 0.04813
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##    16.82847 3964.77211
## sample estimates:
## mean in group 0 mean in group 1 
##       10560.685        8569.885
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  Adiponectin by factor(Phenotype)
## W = 2291.5, p-value = 0.03742
## alternative hypothesis: true location shift is not equal to 0

P values from both tests are < 0.05.

## 
## Call:
## lm(formula = Adiponectin ~ factor(Phenotype) + `GA in weeks`, 
##     data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8758.4 -4071.2  -906.5  3685.9 13487.6 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)  
## (Intercept)          6271.1     3800.3   1.650   0.1014  
## factor(Phenotype)1  -1849.1      979.6  -1.888   0.0614 .
## `GA in weeks`         387.7      339.8   1.141   0.2561  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5191 on 128 degrees of freedom
## Multiple R-squared:  0.04119,    Adjusted R-squared:  0.02621 
## F-statistic: 2.749 on 2 and 128 DF,  p-value: 0.06775
## 
## Call:
## lm(formula = Adiponectin ~ factor(Phenotype) + bmi, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10758.7  -3550.2   -530.8   3443.1  11720.5 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         19888.0     2633.1   7.553 7.09e-12 ***
## factor(Phenotype)1  -1221.4      954.3  -1.280  0.20292    
## bmi                  -376.6      104.2  -3.615  0.00043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4969 on 128 degrees of freedom
## Multiple R-squared:  0.1212, Adjusted R-squared:  0.1075 
## F-statistic: 8.825 on 2 and 128 DF,  p-value: 0.0002567
## 
## Call:
## lm(formula = Adiponectin ~ factor(Phenotype) + `GA in weeks` + 
##     bmi, data = dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10227.8  -3356.5   -556.6   3308.7  12537.1 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         15900.7     4520.9   3.517 0.000606 ***
## factor(Phenotype)1  -1099.3      960.3  -1.145 0.254454    
## `GA in weeks`         352.8      325.3   1.085 0.280159    
## bmi                  -373.2      104.1  -3.584 0.000481 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4966 on 127 degrees of freedom
## Multiple R-squared:  0.1293, Adjusted R-squared:  0.1087 
## F-statistic: 6.284 on 3 and 127 DF,  p-value: 0.0005205

After adjusting for BMI and/or Gastational age, the Phenotype effect becomes non-significant.

## Area under the curve: 0.613

##    threshold  specificity  sensitivity 
## 1.028655e+04 4.943820e-01 7.380952e-01
##              dat$Adiponectin < 10287
## dat$Phenotype FALSE TRUE
##             0    44   45
##             1    11   31

Area under the curve (AUC) for Adiponectin is 0.613. Best thresthold is “Adiponectin < 10287” as case (Phenotype = 1). The corresponding sensitivity is 0.738 and specificity is 0.494.

PEDF versus Phenotype (0=Control, 1=Case)

## 
##  Shapiro-Wilk normality test
## 
## data:  dat.demog$`PEDF, ug/ml`
## W = 0.98492, p-value = 0.02078
## 
##  Welch Two Sample t-test
## 
## data:  PEDF, ug/ml by factor(Phenotype)
## t = -2.0427, df = 95.896, p-value = 0.04383
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.62344416 -0.06621052
## sample estimates:
## mean in group 0 mean in group 1 
##        20.75604        23.10087
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  PEDF, ug/ml by factor(Phenotype)
## W = 3311, p-value = 0.02662
## alternative hypothesis: true location shift is not equal to 0

P values from both tests are < 0.05.

## 
## Call:
## lm(formula = `PEDF, ug/ml` ~ factor(Phenotype) + `GA in weeks`, 
##     data = dat.demog)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.6309  -5.3676   0.1946   5.2796  28.2995 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         25.7261     3.8163   6.741 1.44e-10 ***
## factor(Phenotype)1   2.1294     1.2796   1.664   0.0976 .  
## `GA in weeks`       -0.4432     0.3360  -1.319   0.1885    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.873 on 214 degrees of freedom
##   (27 observations deleted due to missingness)
## Multiple R-squared:  0.02352,    Adjusted R-squared:  0.01439 
## F-statistic: 2.577 on 2 and 214 DF,  p-value: 0.07837
## 
## Call:
## lm(formula = `PEDF, ug/ml` ~ factor(Phenotype) + bmi, data = dat.demog)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.7468  -4.6919   0.3974   4.8366  27.5109 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        11.79801    2.34186   5.038 9.99e-07 ***
## factor(Phenotype)1  2.22450    1.23056   1.808 0.072056 .  
## bmi                 0.33240    0.08409   3.953 0.000105 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.631 on 214 degrees of freedom
##   (27 observations deleted due to missingness)
## Multiple R-squared:  0.08256,    Adjusted R-squared:  0.07399 
## F-statistic: 9.629 on 2 and 214 DF,  p-value: 9.9e-05
## 
## Call:
## lm(formula = `PEDF, ug/ml` ~ factor(Phenotype) + `GA in weeks` + 
##     bmi, data = dat.demog)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.312  -5.108   0.550   4.844  27.699 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        15.96989    4.47480   3.569 0.000443 ***
## factor(Phenotype)1  2.05328    1.23992   1.656 0.099198 .  
## `GA in weeks`      -0.35690    0.32626  -1.094 0.275230    
## bmi                 0.32610    0.08425   3.871 0.000144 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.628 on 213 degrees of freedom
##   (27 observations deleted due to missingness)
## Multiple R-squared:  0.08769,    Adjusted R-squared:  0.07484 
## F-statistic: 6.824 on 3 and 213 DF,  p-value: 0.0002061

After adjusting for BMI and/or Gastational age, the Phenotype effect becomes non-significant.

## Area under the curve: 0.6035

##   threshold specificity sensitivity 
##  20.3077350   0.4670659   0.7400000
##                    dat.demog$`PEDF, ug/ml` > 20.3
## dat.demog$Phenotype FALSE TRUE
##                   0    78   89
##                   1    13   37

Area under the curve (AUC) for PEDF is 0.6035. Best thresthold is “PEDF > 20.3” as case (Phenotype = 1). The corresponding sensitivity is 0.74 and specificity is 0.467.

combined figure