A fast, consistent tool for working with data frame like objects, both in memory and out of memory. This R package was created by Hadley Wickham and Romain Francois.
An evolution of ‘reshape2’. It’s designed specifically for data tidying (not general reshaping or aggregating) and works well with ‘dplyr’ data pipelines. This R package was created by Hadley Wickham.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# converting a dataframe class to tbl class
tbl_df(iris)
## # A tibble: 150 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fctr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## # ... with 140 more rows
# similar to str() function
glimpse(iris)
## Observations: 150
## Variables: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9,...
## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1,...
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5,...
## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1,...
## $ Species <fctr> setosa, setosa, setosa, setosa, setosa, setosa, ...
# opens the data in a new window in R as spreadsheet
View(iris)
# piping operator %>%
# the idea of of piping is to read the functions from left to right.
# in the example below the iris datset is first gruped by different species
# then for each species group the variable Sepal.Width is averaged
# they are then sorted
iris%>%
group_by(Species) %>%
summarise(avg = mean(Sepal.Width)) %>%
arrange(avg)
## # A tibble: 3 × 2
## Species avg
## <fctr> <dbl>
## 1 versicolor 2.770
## 2 virginica 2.974
## 3 setosa 3.428
# cases datasets is in EDAWR package
# A dataset with the estimated number of TB cases in France, Germany, and the United States for 2011, 2012, and 2013.
devtools::install_github("rstudio/EDAWR")
## Skipping install of 'EDAWR' from a github remote, the SHA1 (2652ea64) has not changed since last install.
## Use `force = TRUE` to force installation
library(EDAWR)
##
## Attaching package: 'EDAWR'
## The following objects are masked from 'package:tidyr':
##
## population, who
Description
Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed. You use gather() when you notice that you have columns that are not variables.
Usage
gather(data, key, value, …, na.rm = FALSE, convert = FALSE, factor_key = FALSE)
# cases: A dataset with the estimated number of TB cases in France, Germany, and the United States for 2011, 2012, and 2013
head(cases)
## country 2011 2012 2013
## 1 FR 7000 6900 7000
## 2 DE 5800 6000 6200
## 3 US 15000 14000 13000
gather(cases, "year", "n", 2:4)
## country year n
## 1 FR 2011 7000
## 2 DE 2011 5800
## 3 US 2011 15000
## 4 FR 2012 6900
## 5 DE 2012 6000
## 6 US 2012 14000
## 7 FR 2013 7000
## 8 DE 2013 6200
## 9 US 2013 13000
Description
Given either regular expression or a vector of character positions, separate() turns a single character column into multiple columns.
Usage
separate(data, col, into, sep = “[^[:alnum:]]+”, remove = TRUE, convert = FALSE, extra = “warn”, fill = “warn”, …)
#storms: Wind speed data for six hurricanes, collected from National Hurricane Center's archive of Tropical Cyclone Reports.
head(storms)
## # A tibble: 6 × 4
## storm wind pressure date
## <chr> <int> <int> <date>
## 1 Alberto 110 1007 2000-08-03
## 2 Alex 45 1009 1998-07-27
## 3 Allison 65 1005 1995-06-03
## 4 Ana 40 1013 1997-06-30
## 5 Arlene 50 1010 1999-06-11
## 6 Arthur 45 1010 1996-06-17
separate(storms, date, c("y", "m", "d"))
## # A tibble: 6 × 6
## storm wind pressure y m d
## * <chr> <int> <int> <chr> <chr> <chr>
## 1 Alberto 110 1007 2000 08 03
## 2 Alex 45 1009 1998 07 27
## 3 Allison 65 1005 1995 06 03
## 4 Ana 40 1013 1997 06 30
## 5 Arlene 50 1010 1999 06 11
## 6 Arthur 45 1010 1996 06 17
Description
Spread a key-value pair across multiple columns. Spread rows into columns.
Usage
spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)
# pollution: Pollution data from the WHO, 2014. This dataset contains a subset of data from the Ambient Air Pollution Database, WHO, May 2014.
head(pollution)
## city size amount
## 1 New York large 23
## 2 New York small 14
## 3 London large 22
## 4 London small 16
## 5 Beijing large 121
## 6 Beijing small 56
spread(pollution, size,amount)
## city large small
## 1 Beijing 121 56
## 2 London 22 16
## 3 New York 23 14
Description
Convenience function to paste together multiple columns into one.
Usage
unite(data, col, …, sep = “_“, remove = TRUE)
#The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
unite_(mtcars, "vs_am", c("vs","am"))
## mpg cyl disp hp drat wt qsec vs_am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0_1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0_1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1_1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1_0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0_0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1_0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0_0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1_0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1_0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1_0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1_0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0_0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0_0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0_0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0_0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0_0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0_0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1_1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1_1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1_1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1_0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0_0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0_0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0_0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0_0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1_1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0_1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1_1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0_1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0_1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0_1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1_1 4 2
# Coverting vectors to dataframe
data_frame(a = 1:3, b = 4:6)
## # A tibble: 3 × 2
## a b
## <int> <int>
## 1 1 4
## 2 2 5
## 3 3 6
# sorting mtcars by the variable mpg (from low to high)
# all other variables are also reaaranged accordingly.
arrange(mtcars, mpg)
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## 2 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## 3 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## 4 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## 5 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## 6 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## 7 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## 8 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## 9 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## 10 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## 11 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## 12 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## 13 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## 14 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## 15 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## 16 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## 17 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## 18 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## 19 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## 20 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## 21 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## 22 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## 23 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## 24 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## 25 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## 26 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## 28 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## 29 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## 30 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## 31 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## 32 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# now in descending order
arrange(mtcars, desc(mpg))
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## 2 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## 3 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## 4 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## 5 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## 6 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## 7 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## 8 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## 10 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## 11 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## 12 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## 13 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## 14 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## 15 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## 16 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## 17 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## 18 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## 19 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## 20 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## 21 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## 22 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## 23 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## 24 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## 25 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## 26 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## 27 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## 28 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## 29 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## 30 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## 31 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## 32 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
# renaming columns
# tb: A subset of data from the World Health Organization Global Tuberculosis Report.
head(tb)
## # A tibble: 6 × 6
## country year sex child adult elderly
## <chr> <int> <chr> <int> <int> <int>
## 1 Afghanistan 1995 female NA NA NA
## 2 Afghanistan 1995 male NA NA NA
## 3 Afghanistan 1996 female NA NA NA
## 4 Afghanistan 1996 male NA NA NA
## 5 Afghanistan 1997 female 5 96 1
## 6 Afghanistan 1997 male 0 26 0
rename(tb, y = year)
## # A tibble: 3,800 × 6
## country y sex child adult elderly
## * <chr> <int> <chr> <int> <int> <int>
## 1 Afghanistan 1995 female NA NA NA
## 2 Afghanistan 1995 male NA NA NA
## 3 Afghanistan 1996 female NA NA NA
## 4 Afghanistan 1996 male NA NA NA
## 5 Afghanistan 1997 female 5 96 1
## 6 Afghanistan 1997 male 0 26 0
## 7 Afghanistan 1998 female 45 1142 20
## 8 Afghanistan 1998 male 30 500 41
## 9 Afghanistan 1999 female 25 484 8
## 10 Afghanistan 1999 male 8 212 8
## # ... with 3,790 more rows
This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
# Return rows with matching conditions.
filter(iris, Sepal.Length > 7)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.1 3.0 5.9 2.1 virginica
## 2 7.6 3.0 6.6 2.1 virginica
## 3 7.3 2.9 6.3 1.8 virginica
## 4 7.2 3.6 6.1 2.5 virginica
## 5 7.7 3.8 6.7 2.2 virginica
## 6 7.7 2.6 6.9 2.3 virginica
## 7 7.7 2.8 6.7 2.0 virginica
## 8 7.2 3.2 6.0 1.8 virginica
## 9 7.2 3.0 5.8 1.6 virginica
## 10 7.4 2.8 6.1 1.9 virginica
## 11 7.9 3.8 6.4 2.0 virginica
## 12 7.7 3.0 6.1 2.3 virginica
# Retain only unique/distinct rows from an input tbl. This is similar to unique.data.frame, but considerably faster.
distinct(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 6.8 3.2 5.9 2.3 virginica
## 144 6.7 3.3 5.7 2.5 virginica
## 145 6.7 3.0 5.2 2.3 virginica
## 146 6.3 2.5 5.0 1.9 virginica
## 147 6.5 3.0 5.2 2.0 virginica
## 148 6.2 3.4 5.4 2.3 virginica
## 149 5.9 3.0 5.1 1.8 virginica
# randomly selects a fraction of rows
sample_frac(iris, 0.5, replace = TRUE)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 82 5.5 2.4 3.7 1.0 versicolor
## 42 4.5 2.3 1.3 0.3 setosa
## 108 7.3 2.9 6.3 1.8 virginica
## 65 5.6 2.9 3.6 1.3 versicolor
## 30 4.7 3.2 1.6 0.2 setosa
## 131 7.4 2.8 6.1 1.9 virginica
## 36 5.0 3.2 1.2 0.2 setosa
## 54 5.5 2.3 4.0 1.3 versicolor
## 121 6.9 3.2 5.7 2.3 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 38 4.9 3.6 1.4 0.1 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 85 5.4 3.0 4.5 1.5 versicolor
## 26 5.0 3.0 1.6 0.2 setosa
## 71 5.9 3.2 4.8 1.8 versicolor
## 129 6.4 2.8 5.6 2.1 virginica
## 48 4.6 3.2 1.4 0.2 setosa
## 108.1 7.3 2.9 6.3 1.8 virginica
## 3 4.7 3.2 1.3 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 114 5.7 2.5 5.0 2.0 virginica
## 57 6.3 3.3 4.7 1.6 versicolor
## 39 4.4 3.0 1.3 0.2 setosa
## 125 6.7 3.3 5.7 2.1 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 58 4.9 2.4 3.3 1.0 versicolor
## 82.1 5.5 2.4 3.7 1.0 versicolor
## 46 4.8 3.0 1.4 0.3 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 77 6.8 2.8 4.8 1.4 versicolor
## 4.1 4.6 3.1 1.5 0.2 setosa
## 132 7.9 3.8 6.4 2.0 virginica
## 91 5.5 2.6 4.4 1.2 versicolor
## 124 6.3 2.7 4.9 1.8 virginica
## 74 6.1 2.8 4.7 1.2 versicolor
## 42.1 4.5 2.3 1.3 0.3 setosa
## 130 7.2 3.0 5.8 1.6 virginica
## 100 5.7 2.8 4.1 1.3 versicolor
## 144 6.8 3.2 5.9 2.3 virginica
## 49 5.3 3.7 1.5 0.2 setosa
## 88 6.3 2.3 4.4 1.3 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 132.1 7.9 3.8 6.4 2.0 virginica
## 124.1 6.3 2.7 4.9 1.8 virginica
## 15 5.8 4.0 1.2 0.2 setosa
## 100.1 5.7 2.8 4.1 1.3 versicolor
## 80.1 5.7 2.6 3.5 1.0 versicolor
## 20 5.1 3.8 1.5 0.3 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 118 7.7 3.8 6.7 2.2 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 47 5.1 3.8 1.6 0.2 setosa
## 108.2 7.3 2.9 6.3 1.8 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 108.3 7.3 2.9 6.3 1.8 virginica
## 30.1 4.7 3.2 1.6 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 76 6.6 3.0 4.4 1.4 versicolor
## 28 5.2 3.5 1.5 0.2 setosa
## 70 5.6 2.5 3.9 1.1 versicolor
## 54.1 5.5 2.3 4.0 1.3 versicolor
## 2 4.9 3.0 1.4 0.2 setosa
## 98 6.2 2.9 4.3 1.3 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 74.1 6.1 2.8 4.7 1.2 versicolor
## 7 4.6 3.4 1.4 0.3 setosa
## 145 6.7 3.3 5.7 2.5 virginica
## 129.1 6.4 2.8 5.6 2.1 virginica
## 28.1 5.2 3.5 1.5 0.2 setosa
## 118.1 7.7 3.8 6.7 2.2 virginica
## 87 6.7 3.1 4.7 1.5 versicolor
## 119 7.7 2.6 6.9 2.3 virginica
# selecting n number of rows
sample_n(iris, 10, replace = TRUE)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 52 6.4 3.2 4.5 1.5 versicolor
## 116 6.4 3.2 5.3 2.3 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 85 5.4 3.0 4.5 1.5 versicolor
## 121 6.9 3.2 5.7 2.3 virginica
## 52.1 6.4 3.2 4.5 1.5 versicolor
## 134 6.3 2.8 5.1 1.5 virginica
## 134.1 6.3 2.8 5.1 1.5 virginica
## 6 5.4 3.9 1.7 0.4 setosa
## 31 4.8 3.1 1.6 0.2 setosa
# selecting rows by position
# selecting rows from row ten to row fifteen
slice(iris, 10:15)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.1 1.5 0.1 setosa
## 2 5.4 3.7 1.5 0.2 setosa
## 3 4.8 3.4 1.6 0.2 setosa
## 4 4.8 3.0 1.4 0.1 setosa
## 5 4.3 3.0 1.1 0.1 setosa
## 6 5.8 4.0 1.2 0.2 setosa
# Select and order top n entries (by group if grouped data).
top_n(storms, 2, date)
## # A tibble: 2 × 4
## storm wind pressure date
## <chr> <int> <int> <date>
## 1 Alberto 110 1007 2000-08-03
## 2 Arlene 50 1010 1999-06-11
# Select columns by name or helper function.
select(iris, Sepal.Width, Petal.Length, Species)
## Sepal.Width Petal.Length Species
## 1 3.5 1.4 setosa
## 2 3.0 1.4 setosa
## 3 3.2 1.3 setosa
## 4 3.1 1.5 setosa
## 5 3.6 1.4 setosa
## 6 3.9 1.7 setosa
## 7 3.4 1.4 setosa
## 8 3.4 1.5 setosa
## 9 2.9 1.4 setosa
## 10 3.1 1.5 setosa
## 11 3.7 1.5 setosa
## 12 3.4 1.6 setosa
## 13 3.0 1.4 setosa
## 14 3.0 1.1 setosa
## 15 4.0 1.2 setosa
## 16 4.4 1.5 setosa
## 17 3.9 1.3 setosa
## 18 3.5 1.4 setosa
## 19 3.8 1.7 setosa
## 20 3.8 1.5 setosa
## 21 3.4 1.7 setosa
## 22 3.7 1.5 setosa
## 23 3.6 1.0 setosa
## 24 3.3 1.7 setosa
## 25 3.4 1.9 setosa
## 26 3.0 1.6 setosa
## 27 3.4 1.6 setosa
## 28 3.5 1.5 setosa
## 29 3.4 1.4 setosa
## 30 3.2 1.6 setosa
## 31 3.1 1.6 setosa
## 32 3.4 1.5 setosa
## 33 4.1 1.5 setosa
## 34 4.2 1.4 setosa
## 35 3.1 1.5 setosa
## 36 3.2 1.2 setosa
## 37 3.5 1.3 setosa
## 38 3.6 1.4 setosa
## 39 3.0 1.3 setosa
## 40 3.4 1.5 setosa
## 41 3.5 1.3 setosa
## 42 2.3 1.3 setosa
## 43 3.2 1.3 setosa
## 44 3.5 1.6 setosa
## 45 3.8 1.9 setosa
## 46 3.0 1.4 setosa
## 47 3.8 1.6 setosa
## 48 3.2 1.4 setosa
## 49 3.7 1.5 setosa
## 50 3.3 1.4 setosa
## 51 3.2 4.7 versicolor
## 52 3.2 4.5 versicolor
## 53 3.1 4.9 versicolor
## 54 2.3 4.0 versicolor
## 55 2.8 4.6 versicolor
## 56 2.8 4.5 versicolor
## 57 3.3 4.7 versicolor
## 58 2.4 3.3 versicolor
## 59 2.9 4.6 versicolor
## 60 2.7 3.9 versicolor
## 61 2.0 3.5 versicolor
## 62 3.0 4.2 versicolor
## 63 2.2 4.0 versicolor
## 64 2.9 4.7 versicolor
## 65 2.9 3.6 versicolor
## 66 3.1 4.4 versicolor
## 67 3.0 4.5 versicolor
## 68 2.7 4.1 versicolor
## 69 2.2 4.5 versicolor
## 70 2.5 3.9 versicolor
## 71 3.2 4.8 versicolor
## 72 2.8 4.0 versicolor
## 73 2.5 4.9 versicolor
## 74 2.8 4.7 versicolor
## 75 2.9 4.3 versicolor
## 76 3.0 4.4 versicolor
## 77 2.8 4.8 versicolor
## 78 3.0 5.0 versicolor
## 79 2.9 4.5 versicolor
## 80 2.6 3.5 versicolor
## 81 2.4 3.8 versicolor
## 82 2.4 3.7 versicolor
## 83 2.7 3.9 versicolor
## 84 2.7 5.1 versicolor
## 85 3.0 4.5 versicolor
## 86 3.4 4.5 versicolor
## 87 3.1 4.7 versicolor
## 88 2.3 4.4 versicolor
## 89 3.0 4.1 versicolor
## 90 2.5 4.0 versicolor
## 91 2.6 4.4 versicolor
## 92 3.0 4.6 versicolor
## 93 2.6 4.0 versicolor
## 94 2.3 3.3 versicolor
## 95 2.7 4.2 versicolor
## 96 3.0 4.2 versicolor
## 97 2.9 4.2 versicolor
## 98 2.9 4.3 versicolor
## 99 2.5 3.0 versicolor
## 100 2.8 4.1 versicolor
## 101 3.3 6.0 virginica
## 102 2.7 5.1 virginica
## 103 3.0 5.9 virginica
## 104 2.9 5.6 virginica
## 105 3.0 5.8 virginica
## 106 3.0 6.6 virginica
## 107 2.5 4.5 virginica
## 108 2.9 6.3 virginica
## 109 2.5 5.8 virginica
## 110 3.6 6.1 virginica
## 111 3.2 5.1 virginica
## 112 2.7 5.3 virginica
## 113 3.0 5.5 virginica
## 114 2.5 5.0 virginica
## 115 2.8 5.1 virginica
## 116 3.2 5.3 virginica
## 117 3.0 5.5 virginica
## 118 3.8 6.7 virginica
## 119 2.6 6.9 virginica
## 120 2.2 5.0 virginica
## 121 3.2 5.7 virginica
## 122 2.8 4.9 virginica
## 123 2.8 6.7 virginica
## 124 2.7 4.9 virginica
## 125 3.3 5.7 virginica
## 126 3.2 6.0 virginica
## 127 2.8 4.8 virginica
## 128 3.0 4.9 virginica
## 129 2.8 5.6 virginica
## 130 3.0 5.8 virginica
## 131 2.8 6.1 virginica
## 132 3.8 6.4 virginica
## 133 2.8 5.6 virginica
## 134 2.8 5.1 virginica
## 135 2.6 5.6 virginica
## 136 3.0 6.1 virginica
## 137 3.4 5.6 virginica
## 138 3.1 5.5 virginica
## 139 3.0 4.8 virginica
## 140 3.1 5.4 virginica
## 141 3.1 5.6 virginica
## 142 3.1 5.1 virginica
## 143 2.7 5.1 virginica
## 144 3.2 5.9 virginica
## 145 3.3 5.7 virginica
## 146 3.0 5.2 virginica
## 147 2.5 5.0 virginica
## 148 3.0 5.2 virginica
## 149 3.4 5.4 virginica
## 150 3.0 5.1 virginica
# Select columns whose name contains a character string.
select(iris, contains("."))
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## 7 4.6 3.4 1.4 0.3
## 8 5.0 3.4 1.5 0.2
## 9 4.4 2.9 1.4 0.2
## 10 4.9 3.1 1.5 0.1
## 11 5.4 3.7 1.5 0.2
## 12 4.8 3.4 1.6 0.2
## 13 4.8 3.0 1.4 0.1
## 14 4.3 3.0 1.1 0.1
## 15 5.8 4.0 1.2 0.2
## 16 5.7 4.4 1.5 0.4
## 17 5.4 3.9 1.3 0.4
## 18 5.1 3.5 1.4 0.3
## 19 5.7 3.8 1.7 0.3
## 20 5.1 3.8 1.5 0.3
## 21 5.4 3.4 1.7 0.2
## 22 5.1 3.7 1.5 0.4
## 23 4.6 3.6 1.0 0.2
## 24 5.1 3.3 1.7 0.5
## 25 4.8 3.4 1.9 0.2
## 26 5.0 3.0 1.6 0.2
## 27 5.0 3.4 1.6 0.4
## 28 5.2 3.5 1.5 0.2
## 29 5.2 3.4 1.4 0.2
## 30 4.7 3.2 1.6 0.2
## 31 4.8 3.1 1.6 0.2
## 32 5.4 3.4 1.5 0.4
## 33 5.2 4.1 1.5 0.1
## 34 5.5 4.2 1.4 0.2
## 35 4.9 3.1 1.5 0.2
## 36 5.0 3.2 1.2 0.2
## 37 5.5 3.5 1.3 0.2
## 38 4.9 3.6 1.4 0.1
## 39 4.4 3.0 1.3 0.2
## 40 5.1 3.4 1.5 0.2
## 41 5.0 3.5 1.3 0.3
## 42 4.5 2.3 1.3 0.3
## 43 4.4 3.2 1.3 0.2
## 44 5.0 3.5 1.6 0.6
## 45 5.1 3.8 1.9 0.4
## 46 4.8 3.0 1.4 0.3
## 47 5.1 3.8 1.6 0.2
## 48 4.6 3.2 1.4 0.2
## 49 5.3 3.7 1.5 0.2
## 50 5.0 3.3 1.4 0.2
## 51 7.0 3.2 4.7 1.4
## 52 6.4 3.2 4.5 1.5
## 53 6.9 3.1 4.9 1.5
## 54 5.5 2.3 4.0 1.3
## 55 6.5 2.8 4.6 1.5
## 56 5.7 2.8 4.5 1.3
## 57 6.3 3.3 4.7 1.6
## 58 4.9 2.4 3.3 1.0
## 59 6.6 2.9 4.6 1.3
## 60 5.2 2.7 3.9 1.4
## 61 5.0 2.0 3.5 1.0
## 62 5.9 3.0 4.2 1.5
## 63 6.0 2.2 4.0 1.0
## 64 6.1 2.9 4.7 1.4
## 65 5.6 2.9 3.6 1.3
## 66 6.7 3.1 4.4 1.4
## 67 5.6 3.0 4.5 1.5
## 68 5.8 2.7 4.1 1.0
## 69 6.2 2.2 4.5 1.5
## 70 5.6 2.5 3.9 1.1
## 71 5.9 3.2 4.8 1.8
## 72 6.1 2.8 4.0 1.3
## 73 6.3 2.5 4.9 1.5
## 74 6.1 2.8 4.7 1.2
## 75 6.4 2.9 4.3 1.3
## 76 6.6 3.0 4.4 1.4
## 77 6.8 2.8 4.8 1.4
## 78 6.7 3.0 5.0 1.7
## 79 6.0 2.9 4.5 1.5
## 80 5.7 2.6 3.5 1.0
## 81 5.5 2.4 3.8 1.1
## 82 5.5 2.4 3.7 1.0
## 83 5.8 2.7 3.9 1.2
## 84 6.0 2.7 5.1 1.6
## 85 5.4 3.0 4.5 1.5
## 86 6.0 3.4 4.5 1.6
## 87 6.7 3.1 4.7 1.5
## 88 6.3 2.3 4.4 1.3
## 89 5.6 3.0 4.1 1.3
## 90 5.5 2.5 4.0 1.3
## 91 5.5 2.6 4.4 1.2
## 92 6.1 3.0 4.6 1.4
## 93 5.8 2.6 4.0 1.2
## 94 5.0 2.3 3.3 1.0
## 95 5.6 2.7 4.2 1.3
## 96 5.7 3.0 4.2 1.2
## 97 5.7 2.9 4.2 1.3
## 98 6.2 2.9 4.3 1.3
## 99 5.1 2.5 3.0 1.1
## 100 5.7 2.8 4.1 1.3
## 101 6.3 3.3 6.0 2.5
## 102 5.8 2.7 5.1 1.9
## 103 7.1 3.0 5.9 2.1
## 104 6.3 2.9 5.6 1.8
## 105 6.5 3.0 5.8 2.2
## 106 7.6 3.0 6.6 2.1
## 107 4.9 2.5 4.5 1.7
## 108 7.3 2.9 6.3 1.8
## 109 6.7 2.5 5.8 1.8
## 110 7.2 3.6 6.1 2.5
## 111 6.5 3.2 5.1 2.0
## 112 6.4 2.7 5.3 1.9
## 113 6.8 3.0 5.5 2.1
## 114 5.7 2.5 5.0 2.0
## 115 5.8 2.8 5.1 2.4
## 116 6.4 3.2 5.3 2.3
## 117 6.5 3.0 5.5 1.8
## 118 7.7 3.8 6.7 2.2
## 119 7.7 2.6 6.9 2.3
## 120 6.0 2.2 5.0 1.5
## 121 6.9 3.2 5.7 2.3
## 122 5.6 2.8 4.9 2.0
## 123 7.7 2.8 6.7 2.0
## 124 6.3 2.7 4.9 1.8
## 125 6.7 3.3 5.7 2.1
## 126 7.2 3.2 6.0 1.8
## 127 6.2 2.8 4.8 1.8
## 128 6.1 3.0 4.9 1.8
## 129 6.4 2.8 5.6 2.1
## 130 7.2 3.0 5.8 1.6
## 131 7.4 2.8 6.1 1.9
## 132 7.9 3.8 6.4 2.0
## 133 6.4 2.8 5.6 2.2
## 134 6.3 2.8 5.1 1.5
## 135 6.1 2.6 5.6 1.4
## 136 7.7 3.0 6.1 2.3
## 137 6.3 3.4 5.6 2.4
## 138 6.4 3.1 5.5 1.8
## 139 6.0 3.0 4.8 1.8
## 140 6.9 3.1 5.4 2.1
## 141 6.7 3.1 5.6 2.4
## 142 6.9 3.1 5.1 2.3
## 143 5.8 2.7 5.1 1.9
## 144 6.8 3.2 5.9 2.3
## 145 6.7 3.3 5.7 2.5
## 146 6.7 3.0 5.2 2.3
## 147 6.3 2.5 5.0 1.9
## 148 6.5 3.0 5.2 2.0
## 149 6.2 3.4 5.4 2.3
## 150 5.9 3.0 5.1 1.8
# Select columns whose name ends with a character string.
select(iris, ends_with("Length"))
## Sepal.Length Petal.Length
## 1 5.1 1.4
## 2 4.9 1.4
## 3 4.7 1.3
## 4 4.6 1.5
## 5 5.0 1.4
## 6 5.4 1.7
## 7 4.6 1.4
## 8 5.0 1.5
## 9 4.4 1.4
## 10 4.9 1.5
## 11 5.4 1.5
## 12 4.8 1.6
## 13 4.8 1.4
## 14 4.3 1.1
## 15 5.8 1.2
## 16 5.7 1.5
## 17 5.4 1.3
## 18 5.1 1.4
## 19 5.7 1.7
## 20 5.1 1.5
## 21 5.4 1.7
## 22 5.1 1.5
## 23 4.6 1.0
## 24 5.1 1.7
## 25 4.8 1.9
## 26 5.0 1.6
## 27 5.0 1.6
## 28 5.2 1.5
## 29 5.2 1.4
## 30 4.7 1.6
## 31 4.8 1.6
## 32 5.4 1.5
## 33 5.2 1.5
## 34 5.5 1.4
## 35 4.9 1.5
## 36 5.0 1.2
## 37 5.5 1.3
## 38 4.9 1.4
## 39 4.4 1.3
## 40 5.1 1.5
## 41 5.0 1.3
## 42 4.5 1.3
## 43 4.4 1.3
## 44 5.0 1.6
## 45 5.1 1.9
## 46 4.8 1.4
## 47 5.1 1.6
## 48 4.6 1.4
## 49 5.3 1.5
## 50 5.0 1.4
## 51 7.0 4.7
## 52 6.4 4.5
## 53 6.9 4.9
## 54 5.5 4.0
## 55 6.5 4.6
## 56 5.7 4.5
## 57 6.3 4.7
## 58 4.9 3.3
## 59 6.6 4.6
## 60 5.2 3.9
## 61 5.0 3.5
## 62 5.9 4.2
## 63 6.0 4.0
## 64 6.1 4.7
## 65 5.6 3.6
## 66 6.7 4.4
## 67 5.6 4.5
## 68 5.8 4.1
## 69 6.2 4.5
## 70 5.6 3.9
## 71 5.9 4.8
## 72 6.1 4.0
## 73 6.3 4.9
## 74 6.1 4.7
## 75 6.4 4.3
## 76 6.6 4.4
## 77 6.8 4.8
## 78 6.7 5.0
## 79 6.0 4.5
## 80 5.7 3.5
## 81 5.5 3.8
## 82 5.5 3.7
## 83 5.8 3.9
## 84 6.0 5.1
## 85 5.4 4.5
## 86 6.0 4.5
## 87 6.7 4.7
## 88 6.3 4.4
## 89 5.6 4.1
## 90 5.5 4.0
## 91 5.5 4.4
## 92 6.1 4.6
## 93 5.8 4.0
## 94 5.0 3.3
## 95 5.6 4.2
## 96 5.7 4.2
## 97 5.7 4.2
## 98 6.2 4.3
## 99 5.1 3.0
## 100 5.7 4.1
## 101 6.3 6.0
## 102 5.8 5.1
## 103 7.1 5.9
## 104 6.3 5.6
## 105 6.5 5.8
## 106 7.6 6.6
## 107 4.9 4.5
## 108 7.3 6.3
## 109 6.7 5.8
## 110 7.2 6.1
## 111 6.5 5.1
## 112 6.4 5.3
## 113 6.8 5.5
## 114 5.7 5.0
## 115 5.8 5.1
## 116 6.4 5.3
## 117 6.5 5.5
## 118 7.7 6.7
## 119 7.7 6.9
## 120 6.0 5.0
## 121 6.9 5.7
## 122 5.6 4.9
## 123 7.7 6.7
## 124 6.3 4.9
## 125 6.7 5.7
## 126 7.2 6.0
## 127 6.2 4.8
## 128 6.1 4.9
## 129 6.4 5.6
## 130 7.2 5.8
## 131 7.4 6.1
## 132 7.9 6.4
## 133 6.4 5.6
## 134 6.3 5.1
## 135 6.1 5.6
## 136 7.7 6.1
## 137 6.3 5.6
## 138 6.4 5.5
## 139 6.0 4.8
## 140 6.9 5.4
## 141 6.7 5.6
## 142 6.9 5.1
## 143 5.8 5.1
## 144 6.8 5.9
## 145 6.7 5.7
## 146 6.7 5.2
## 147 6.3 5.0
## 148 6.5 5.2
## 149 6.2 5.4
## 150 5.9 5.1
# Select every column.
select(iris, everything())
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
# Select columns whose name matches a regular expression.
select(iris, matches("Petal.Length"))
## Petal.Length
## 1 1.4
## 2 1.4
## 3 1.3
## 4 1.5
## 5 1.4
## 6 1.7
## 7 1.4
## 8 1.5
## 9 1.4
## 10 1.5
## 11 1.5
## 12 1.6
## 13 1.4
## 14 1.1
## 15 1.2
## 16 1.5
## 17 1.3
## 18 1.4
## 19 1.7
## 20 1.5
## 21 1.7
## 22 1.5
## 23 1.0
## 24 1.7
## 25 1.9
## 26 1.6
## 27 1.6
## 28 1.5
## 29 1.4
## 30 1.6
## 31 1.6
## 32 1.5
## 33 1.5
## 34 1.4
## 35 1.5
## 36 1.2
## 37 1.3
## 38 1.4
## 39 1.3
## 40 1.5
## 41 1.3
## 42 1.3
## 43 1.3
## 44 1.6
## 45 1.9
## 46 1.4
## 47 1.6
## 48 1.4
## 49 1.5
## 50 1.4
## 51 4.7
## 52 4.5
## 53 4.9
## 54 4.0
## 55 4.6
## 56 4.5
## 57 4.7
## 58 3.3
## 59 4.6
## 60 3.9
## 61 3.5
## 62 4.2
## 63 4.0
## 64 4.7
## 65 3.6
## 66 4.4
## 67 4.5
## 68 4.1
## 69 4.5
## 70 3.9
## 71 4.8
## 72 4.0
## 73 4.9
## 74 4.7
## 75 4.3
## 76 4.4
## 77 4.8
## 78 5.0
## 79 4.5
## 80 3.5
## 81 3.8
## 82 3.7
## 83 3.9
## 84 5.1
## 85 4.5
## 86 4.5
## 87 4.7
## 88 4.4
## 89 4.1
## 90 4.0
## 91 4.4
## 92 4.6
## 93 4.0
## 94 3.3
## 95 4.2
## 96 4.2
## 97 4.2
## 98 4.3
## 99 3.0
## 100 4.1
## 101 6.0
## 102 5.1
## 103 5.9
## 104 5.6
## 105 5.8
## 106 6.6
## 107 4.5
## 108 6.3
## 109 5.8
## 110 6.1
## 111 5.1
## 112 5.3
## 113 5.5
## 114 5.0
## 115 5.1
## 116 5.3
## 117 5.5
## 118 6.7
## 119 6.9
## 120 5.0
## 121 5.7
## 122 4.9
## 123 6.7
## 124 4.9
## 125 5.7
## 126 6.0
## 127 4.8
## 128 4.9
## 129 5.6
## 130 5.8
## 131 6.1
## 132 6.4
## 133 5.6
## 134 5.1
## 135 5.6
## 136 6.1
## 137 5.6
## 138 5.5
## 139 4.8
## 140 5.4
## 141 5.6
## 142 5.1
## 143 5.1
## 144 5.9
## 145 5.7
## 146 5.2
## 147 5.0
## 148 5.2
## 149 5.4
## 150 5.1
# Select columns whose names are in a group of names.
select(iris, one_of(c("Species", "Petal.Length")))
## Species Petal.Length
## 1 setosa 1.4
## 2 setosa 1.4
## 3 setosa 1.3
## 4 setosa 1.5
## 5 setosa 1.4
## 6 setosa 1.7
## 7 setosa 1.4
## 8 setosa 1.5
## 9 setosa 1.4
## 10 setosa 1.5
## 11 setosa 1.5
## 12 setosa 1.6
## 13 setosa 1.4
## 14 setosa 1.1
## 15 setosa 1.2
## 16 setosa 1.5
## 17 setosa 1.3
## 18 setosa 1.4
## 19 setosa 1.7
## 20 setosa 1.5
## 21 setosa 1.7
## 22 setosa 1.5
## 23 setosa 1.0
## 24 setosa 1.7
## 25 setosa 1.9
## 26 setosa 1.6
## 27 setosa 1.6
## 28 setosa 1.5
## 29 setosa 1.4
## 30 setosa 1.6
## 31 setosa 1.6
## 32 setosa 1.5
## 33 setosa 1.5
## 34 setosa 1.4
## 35 setosa 1.5
## 36 setosa 1.2
## 37 setosa 1.3
## 38 setosa 1.4
## 39 setosa 1.3
## 40 setosa 1.5
## 41 setosa 1.3
## 42 setosa 1.3
## 43 setosa 1.3
## 44 setosa 1.6
## 45 setosa 1.9
## 46 setosa 1.4
## 47 setosa 1.6
## 48 setosa 1.4
## 49 setosa 1.5
## 50 setosa 1.4
## 51 versicolor 4.7
## 52 versicolor 4.5
## 53 versicolor 4.9
## 54 versicolor 4.0
## 55 versicolor 4.6
## 56 versicolor 4.5
## 57 versicolor 4.7
## 58 versicolor 3.3
## 59 versicolor 4.6
## 60 versicolor 3.9
## 61 versicolor 3.5
## 62 versicolor 4.2
## 63 versicolor 4.0
## 64 versicolor 4.7
## 65 versicolor 3.6
## 66 versicolor 4.4
## 67 versicolor 4.5
## 68 versicolor 4.1
## 69 versicolor 4.5
## 70 versicolor 3.9
## 71 versicolor 4.8
## 72 versicolor 4.0
## 73 versicolor 4.9
## 74 versicolor 4.7
## 75 versicolor 4.3
## 76 versicolor 4.4
## 77 versicolor 4.8
## 78 versicolor 5.0
## 79 versicolor 4.5
## 80 versicolor 3.5
## 81 versicolor 3.8
## 82 versicolor 3.7
## 83 versicolor 3.9
## 84 versicolor 5.1
## 85 versicolor 4.5
## 86 versicolor 4.5
## 87 versicolor 4.7
## 88 versicolor 4.4
## 89 versicolor 4.1
## 90 versicolor 4.0
## 91 versicolor 4.4
## 92 versicolor 4.6
## 93 versicolor 4.0
## 94 versicolor 3.3
## 95 versicolor 4.2
## 96 versicolor 4.2
## 97 versicolor 4.2
## 98 versicolor 4.3
## 99 versicolor 3.0
## 100 versicolor 4.1
## 101 virginica 6.0
## 102 virginica 5.1
## 103 virginica 5.9
## 104 virginica 5.6
## 105 virginica 5.8
## 106 virginica 6.6
## 107 virginica 4.5
## 108 virginica 6.3
## 109 virginica 5.8
## 110 virginica 6.1
## 111 virginica 5.1
## 112 virginica 5.3
## 113 virginica 5.5
## 114 virginica 5.0
## 115 virginica 5.1
## 116 virginica 5.3
## 117 virginica 5.5
## 118 virginica 6.7
## 119 virginica 6.9
## 120 virginica 5.0
## 121 virginica 5.7
## 122 virginica 4.9
## 123 virginica 6.7
## 124 virginica 4.9
## 125 virginica 5.7
## 126 virginica 6.0
## 127 virginica 4.8
## 128 virginica 4.9
## 129 virginica 5.6
## 130 virginica 5.8
## 131 virginica 6.1
## 132 virginica 6.4
## 133 virginica 5.6
## 134 virginica 5.1
## 135 virginica 5.6
## 136 virginica 6.1
## 137 virginica 5.6
## 138 virginica 5.5
## 139 virginica 4.8
## 140 virginica 5.4
## 141 virginica 5.6
## 142 virginica 5.1
## 143 virginica 5.1
## 144 virginica 5.9
## 145 virginica 5.7
## 146 virginica 5.2
## 147 virginica 5.0
## 148 virginica 5.2
## 149 virginica 5.4
## 150 virginica 5.1
# Select columns whose name starts with a character string.
select(iris, starts_with("Petal"))
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 3 1.3 0.2
## 4 1.5 0.2
## 5 1.4 0.2
## 6 1.7 0.4
## 7 1.4 0.3
## 8 1.5 0.2
## 9 1.4 0.2
## 10 1.5 0.1
## 11 1.5 0.2
## 12 1.6 0.2
## 13 1.4 0.1
## 14 1.1 0.1
## 15 1.2 0.2
## 16 1.5 0.4
## 17 1.3 0.4
## 18 1.4 0.3
## 19 1.7 0.3
## 20 1.5 0.3
## 21 1.7 0.2
## 22 1.5 0.4
## 23 1.0 0.2
## 24 1.7 0.5
## 25 1.9 0.2
## 26 1.6 0.2
## 27 1.6 0.4
## 28 1.5 0.2
## 29 1.4 0.2
## 30 1.6 0.2
## 31 1.6 0.2
## 32 1.5 0.4
## 33 1.5 0.1
## 34 1.4 0.2
## 35 1.5 0.2
## 36 1.2 0.2
## 37 1.3 0.2
## 38 1.4 0.1
## 39 1.3 0.2
## 40 1.5 0.2
## 41 1.3 0.3
## 42 1.3 0.3
## 43 1.3 0.2
## 44 1.6 0.6
## 45 1.9 0.4
## 46 1.4 0.3
## 47 1.6 0.2
## 48 1.4 0.2
## 49 1.5 0.2
## 50 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 53 4.9 1.5
## 54 4.0 1.3
## 55 4.6 1.5
## 56 4.5 1.3
## 57 4.7 1.6
## 58 3.3 1.0
## 59 4.6 1.3
## 60 3.9 1.4
## 61 3.5 1.0
## 62 4.2 1.5
## 63 4.0 1.0
## 64 4.7 1.4
## 65 3.6 1.3
## 66 4.4 1.4
## 67 4.5 1.5
## 68 4.1 1.0
## 69 4.5 1.5
## 70 3.9 1.1
## 71 4.8 1.8
## 72 4.0 1.3
## 73 4.9 1.5
## 74 4.7 1.2
## 75 4.3 1.3
## 76 4.4 1.4
## 77 4.8 1.4
## 78 5.0 1.7
## 79 4.5 1.5
## 80 3.5 1.0
## 81 3.8 1.1
## 82 3.7 1.0
## 83 3.9 1.2
## 84 5.1 1.6
## 85 4.5 1.5
## 86 4.5 1.6
## 87 4.7 1.5
## 88 4.4 1.3
## 89 4.1 1.3
## 90 4.0 1.3
## 91 4.4 1.2
## 92 4.6 1.4
## 93 4.0 1.2
## 94 3.3 1.0
## 95 4.2 1.3
## 96 4.2 1.2
## 97 4.2 1.3
## 98 4.3 1.3
## 99 3.0 1.1
## 100 4.1 1.3
## 101 6.0 2.5
## 102 5.1 1.9
## 103 5.9 2.1
## 104 5.6 1.8
## 105 5.8 2.2
## 106 6.6 2.1
## 107 4.5 1.7
## 108 6.3 1.8
## 109 5.8 1.8
## 110 6.1 2.5
## 111 5.1 2.0
## 112 5.3 1.9
## 113 5.5 2.1
## 114 5.0 2.0
## 115 5.1 2.4
## 116 5.3 2.3
## 117 5.5 1.8
## 118 6.7 2.2
## 119 6.9 2.3
## 120 5.0 1.5
## 121 5.7 2.3
## 122 4.9 2.0
## 123 6.7 2.0
## 124 4.9 1.8
## 125 5.7 2.1
## 126 6.0 1.8
## 127 4.8 1.8
## 128 4.9 1.8
## 129 5.6 2.1
## 130 5.8 1.6
## 131 6.1 1.9
## 132 6.4 2.0
## 133 5.6 2.2
## 134 5.1 1.5
## 135 5.6 1.4
## 136 6.1 2.3
## 137 5.6 2.4
## 138 5.5 1.8
## 139 4.8 1.8
## 140 5.4 2.1
## 141 5.6 2.4
## 142 5.1 2.3
## 143 5.1 1.9
## 144 5.9 2.3
## 145 5.7 2.5
## 146 5.2 2.3
## 147 5.0 1.9
## 148 5.2 2.0
## 149 5.4 2.3
## 150 5.1 1.8
# Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, Sepal.Length:Petal.Width)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## 7 4.6 3.4 1.4 0.3
## 8 5.0 3.4 1.5 0.2
## 9 4.4 2.9 1.4 0.2
## 10 4.9 3.1 1.5 0.1
## 11 5.4 3.7 1.5 0.2
## 12 4.8 3.4 1.6 0.2
## 13 4.8 3.0 1.4 0.1
## 14 4.3 3.0 1.1 0.1
## 15 5.8 4.0 1.2 0.2
## 16 5.7 4.4 1.5 0.4
## 17 5.4 3.9 1.3 0.4
## 18 5.1 3.5 1.4 0.3
## 19 5.7 3.8 1.7 0.3
## 20 5.1 3.8 1.5 0.3
## 21 5.4 3.4 1.7 0.2
## 22 5.1 3.7 1.5 0.4
## 23 4.6 3.6 1.0 0.2
## 24 5.1 3.3 1.7 0.5
## 25 4.8 3.4 1.9 0.2
## 26 5.0 3.0 1.6 0.2
## 27 5.0 3.4 1.6 0.4
## 28 5.2 3.5 1.5 0.2
## 29 5.2 3.4 1.4 0.2
## 30 4.7 3.2 1.6 0.2
## 31 4.8 3.1 1.6 0.2
## 32 5.4 3.4 1.5 0.4
## 33 5.2 4.1 1.5 0.1
## 34 5.5 4.2 1.4 0.2
## 35 4.9 3.1 1.5 0.2
## 36 5.0 3.2 1.2 0.2
## 37 5.5 3.5 1.3 0.2
## 38 4.9 3.6 1.4 0.1
## 39 4.4 3.0 1.3 0.2
## 40 5.1 3.4 1.5 0.2
## 41 5.0 3.5 1.3 0.3
## 42 4.5 2.3 1.3 0.3
## 43 4.4 3.2 1.3 0.2
## 44 5.0 3.5 1.6 0.6
## 45 5.1 3.8 1.9 0.4
## 46 4.8 3.0 1.4 0.3
## 47 5.1 3.8 1.6 0.2
## 48 4.6 3.2 1.4 0.2
## 49 5.3 3.7 1.5 0.2
## 50 5.0 3.3 1.4 0.2
## 51 7.0 3.2 4.7 1.4
## 52 6.4 3.2 4.5 1.5
## 53 6.9 3.1 4.9 1.5
## 54 5.5 2.3 4.0 1.3
## 55 6.5 2.8 4.6 1.5
## 56 5.7 2.8 4.5 1.3
## 57 6.3 3.3 4.7 1.6
## 58 4.9 2.4 3.3 1.0
## 59 6.6 2.9 4.6 1.3
## 60 5.2 2.7 3.9 1.4
## 61 5.0 2.0 3.5 1.0
## 62 5.9 3.0 4.2 1.5
## 63 6.0 2.2 4.0 1.0
## 64 6.1 2.9 4.7 1.4
## 65 5.6 2.9 3.6 1.3
## 66 6.7 3.1 4.4 1.4
## 67 5.6 3.0 4.5 1.5
## 68 5.8 2.7 4.1 1.0
## 69 6.2 2.2 4.5 1.5
## 70 5.6 2.5 3.9 1.1
## 71 5.9 3.2 4.8 1.8
## 72 6.1 2.8 4.0 1.3
## 73 6.3 2.5 4.9 1.5
## 74 6.1 2.8 4.7 1.2
## 75 6.4 2.9 4.3 1.3
## 76 6.6 3.0 4.4 1.4
## 77 6.8 2.8 4.8 1.4
## 78 6.7 3.0 5.0 1.7
## 79 6.0 2.9 4.5 1.5
## 80 5.7 2.6 3.5 1.0
## 81 5.5 2.4 3.8 1.1
## 82 5.5 2.4 3.7 1.0
## 83 5.8 2.7 3.9 1.2
## 84 6.0 2.7 5.1 1.6
## 85 5.4 3.0 4.5 1.5
## 86 6.0 3.4 4.5 1.6
## 87 6.7 3.1 4.7 1.5
## 88 6.3 2.3 4.4 1.3
## 89 5.6 3.0 4.1 1.3
## 90 5.5 2.5 4.0 1.3
## 91 5.5 2.6 4.4 1.2
## 92 6.1 3.0 4.6 1.4
## 93 5.8 2.6 4.0 1.2
## 94 5.0 2.3 3.3 1.0
## 95 5.6 2.7 4.2 1.3
## 96 5.7 3.0 4.2 1.2
## 97 5.7 2.9 4.2 1.3
## 98 6.2 2.9 4.3 1.3
## 99 5.1 2.5 3.0 1.1
## 100 5.7 2.8 4.1 1.3
## 101 6.3 3.3 6.0 2.5
## 102 5.8 2.7 5.1 1.9
## 103 7.1 3.0 5.9 2.1
## 104 6.3 2.9 5.6 1.8
## 105 6.5 3.0 5.8 2.2
## 106 7.6 3.0 6.6 2.1
## 107 4.9 2.5 4.5 1.7
## 108 7.3 2.9 6.3 1.8
## 109 6.7 2.5 5.8 1.8
## 110 7.2 3.6 6.1 2.5
## 111 6.5 3.2 5.1 2.0
## 112 6.4 2.7 5.3 1.9
## 113 6.8 3.0 5.5 2.1
## 114 5.7 2.5 5.0 2.0
## 115 5.8 2.8 5.1 2.4
## 116 6.4 3.2 5.3 2.3
## 117 6.5 3.0 5.5 1.8
## 118 7.7 3.8 6.7 2.2
## 119 7.7 2.6 6.9 2.3
## 120 6.0 2.2 5.0 1.5
## 121 6.9 3.2 5.7 2.3
## 122 5.6 2.8 4.9 2.0
## 123 7.7 2.8 6.7 2.0
## 124 6.3 2.7 4.9 1.8
## 125 6.7 3.3 5.7 2.1
## 126 7.2 3.2 6.0 1.8
## 127 6.2 2.8 4.8 1.8
## 128 6.1 3.0 4.9 1.8
## 129 6.4 2.8 5.6 2.1
## 130 7.2 3.0 5.8 1.6
## 131 7.4 2.8 6.1 1.9
## 132 7.9 3.8 6.4 2.0
## 133 6.4 2.8 5.6 2.2
## 134 6.3 2.8 5.1 1.5
## 135 6.1 2.6 5.6 1.4
## 136 7.7 3.0 6.1 2.3
## 137 6.3 3.4 5.6 2.4
## 138 6.4 3.1 5.5 1.8
## 139 6.0 3.0 4.8 1.8
## 140 6.9 3.1 5.4 2.1
## 141 6.7 3.1 5.6 2.4
## 142 6.9 3.1 5.1 2.3
## 143 5.8 2.7 5.1 1.9
## 144 6.8 3.2 5.9 2.3
## 145 6.7 3.3 5.7 2.5
## 146 6.7 3.0 5.2 2.3
## 147 6.3 2.5 5.0 1.9
## 148 6.5 3.0 5.2 2.0
## 149 6.2 3.4 5.4 2.3
## 150 5.9 3.0 5.1 1.8
# Reorder variables: keep the variable "Species" in the front
select(iris, Species, everything())
## Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 setosa 5.1 3.5 1.4 0.2
## 2 setosa 4.9 3.0 1.4 0.2
## 3 setosa 4.7 3.2 1.3 0.2
## 4 setosa 4.6 3.1 1.5 0.2
## 5 setosa 5.0 3.6 1.4 0.2
## 6 setosa 5.4 3.9 1.7 0.4
## 7 setosa 4.6 3.4 1.4 0.3
## 8 setosa 5.0 3.4 1.5 0.2
## 9 setosa 4.4 2.9 1.4 0.2
## 10 setosa 4.9 3.1 1.5 0.1
## 11 setosa 5.4 3.7 1.5 0.2
## 12 setosa 4.8 3.4 1.6 0.2
## 13 setosa 4.8 3.0 1.4 0.1
## 14 setosa 4.3 3.0 1.1 0.1
## 15 setosa 5.8 4.0 1.2 0.2
## 16 setosa 5.7 4.4 1.5 0.4
## 17 setosa 5.4 3.9 1.3 0.4
## 18 setosa 5.1 3.5 1.4 0.3
## 19 setosa 5.7 3.8 1.7 0.3
## 20 setosa 5.1 3.8 1.5 0.3
## 21 setosa 5.4 3.4 1.7 0.2
## 22 setosa 5.1 3.7 1.5 0.4
## 23 setosa 4.6 3.6 1.0 0.2
## 24 setosa 5.1 3.3 1.7 0.5
## 25 setosa 4.8 3.4 1.9 0.2
## 26 setosa 5.0 3.0 1.6 0.2
## 27 setosa 5.0 3.4 1.6 0.4
## 28 setosa 5.2 3.5 1.5 0.2
## 29 setosa 5.2 3.4 1.4 0.2
## 30 setosa 4.7 3.2 1.6 0.2
## 31 setosa 4.8 3.1 1.6 0.2
## 32 setosa 5.4 3.4 1.5 0.4
## 33 setosa 5.2 4.1 1.5 0.1
## 34 setosa 5.5 4.2 1.4 0.2
## 35 setosa 4.9 3.1 1.5 0.2
## 36 setosa 5.0 3.2 1.2 0.2
## 37 setosa 5.5 3.5 1.3 0.2
## 38 setosa 4.9 3.6 1.4 0.1
## 39 setosa 4.4 3.0 1.3 0.2
## 40 setosa 5.1 3.4 1.5 0.2
## 41 setosa 5.0 3.5 1.3 0.3
## 42 setosa 4.5 2.3 1.3 0.3
## 43 setosa 4.4 3.2 1.3 0.2
## 44 setosa 5.0 3.5 1.6 0.6
## 45 setosa 5.1 3.8 1.9 0.4
## 46 setosa 4.8 3.0 1.4 0.3
## 47 setosa 5.1 3.8 1.6 0.2
## 48 setosa 4.6 3.2 1.4 0.2
## 49 setosa 5.3 3.7 1.5 0.2
## 50 setosa 5.0 3.3 1.4 0.2
## 51 versicolor 7.0 3.2 4.7 1.4
## 52 versicolor 6.4 3.2 4.5 1.5
## 53 versicolor 6.9 3.1 4.9 1.5
## 54 versicolor 5.5 2.3 4.0 1.3
## 55 versicolor 6.5 2.8 4.6 1.5
## 56 versicolor 5.7 2.8 4.5 1.3
## 57 versicolor 6.3 3.3 4.7 1.6
## 58 versicolor 4.9 2.4 3.3 1.0
## 59 versicolor 6.6 2.9 4.6 1.3
## 60 versicolor 5.2 2.7 3.9 1.4
## 61 versicolor 5.0 2.0 3.5 1.0
## 62 versicolor 5.9 3.0 4.2 1.5
## 63 versicolor 6.0 2.2 4.0 1.0
## 64 versicolor 6.1 2.9 4.7 1.4
## 65 versicolor 5.6 2.9 3.6 1.3
## 66 versicolor 6.7 3.1 4.4 1.4
## 67 versicolor 5.6 3.0 4.5 1.5
## 68 versicolor 5.8 2.7 4.1 1.0
## 69 versicolor 6.2 2.2 4.5 1.5
## 70 versicolor 5.6 2.5 3.9 1.1
## 71 versicolor 5.9 3.2 4.8 1.8
## 72 versicolor 6.1 2.8 4.0 1.3
## 73 versicolor 6.3 2.5 4.9 1.5
## 74 versicolor 6.1 2.8 4.7 1.2
## 75 versicolor 6.4 2.9 4.3 1.3
## 76 versicolor 6.6 3.0 4.4 1.4
## 77 versicolor 6.8 2.8 4.8 1.4
## 78 versicolor 6.7 3.0 5.0 1.7
## 79 versicolor 6.0 2.9 4.5 1.5
## 80 versicolor 5.7 2.6 3.5 1.0
## 81 versicolor 5.5 2.4 3.8 1.1
## 82 versicolor 5.5 2.4 3.7 1.0
## 83 versicolor 5.8 2.7 3.9 1.2
## 84 versicolor 6.0 2.7 5.1 1.6
## 85 versicolor 5.4 3.0 4.5 1.5
## 86 versicolor 6.0 3.4 4.5 1.6
## 87 versicolor 6.7 3.1 4.7 1.5
## 88 versicolor 6.3 2.3 4.4 1.3
## 89 versicolor 5.6 3.0 4.1 1.3
## 90 versicolor 5.5 2.5 4.0 1.3
## 91 versicolor 5.5 2.6 4.4 1.2
## 92 versicolor 6.1 3.0 4.6 1.4
## 93 versicolor 5.8 2.6 4.0 1.2
## 94 versicolor 5.0 2.3 3.3 1.0
## 95 versicolor 5.6 2.7 4.2 1.3
## 96 versicolor 5.7 3.0 4.2 1.2
## 97 versicolor 5.7 2.9 4.2 1.3
## 98 versicolor 6.2 2.9 4.3 1.3
## 99 versicolor 5.1 2.5 3.0 1.1
## 100 versicolor 5.7 2.8 4.1 1.3
## 101 virginica 6.3 3.3 6.0 2.5
## 102 virginica 5.8 2.7 5.1 1.9
## 103 virginica 7.1 3.0 5.9 2.1
## 104 virginica 6.3 2.9 5.6 1.8
## 105 virginica 6.5 3.0 5.8 2.2
## 106 virginica 7.6 3.0 6.6 2.1
## 107 virginica 4.9 2.5 4.5 1.7
## 108 virginica 7.3 2.9 6.3 1.8
## 109 virginica 6.7 2.5 5.8 1.8
## 110 virginica 7.2 3.6 6.1 2.5
## 111 virginica 6.5 3.2 5.1 2.0
## 112 virginica 6.4 2.7 5.3 1.9
## 113 virginica 6.8 3.0 5.5 2.1
## 114 virginica 5.7 2.5 5.0 2.0
## 115 virginica 5.8 2.8 5.1 2.4
## 116 virginica 6.4 3.2 5.3 2.3
## 117 virginica 6.5 3.0 5.5 1.8
## 118 virginica 7.7 3.8 6.7 2.2
## 119 virginica 7.7 2.6 6.9 2.3
## 120 virginica 6.0 2.2 5.0 1.5
## 121 virginica 6.9 3.2 5.7 2.3
## 122 virginica 5.6 2.8 4.9 2.0
## 123 virginica 7.7 2.8 6.7 2.0
## 124 virginica 6.3 2.7 4.9 1.8
## 125 virginica 6.7 3.3 5.7 2.1
## 126 virginica 7.2 3.2 6.0 1.8
## 127 virginica 6.2 2.8 4.8 1.8
## 128 virginica 6.1 3.0 4.9 1.8
## 129 virginica 6.4 2.8 5.6 2.1
## 130 virginica 7.2 3.0 5.8 1.6
## 131 virginica 7.4 2.8 6.1 1.9
## 132 virginica 7.9 3.8 6.4 2.0
## 133 virginica 6.4 2.8 5.6 2.2
## 134 virginica 6.3 2.8 5.1 1.5
## 135 virginica 6.1 2.6 5.6 1.4
## 136 virginica 7.7 3.0 6.1 2.3
## 137 virginica 6.3 3.4 5.6 2.4
## 138 virginica 6.4 3.1 5.5 1.8
## 139 virginica 6.0 3.0 4.8 1.8
## 140 virginica 6.9 3.1 5.4 2.1
## 141 virginica 6.7 3.1 5.6 2.4
## 142 virginica 6.9 3.1 5.1 2.3
## 143 virginica 5.8 2.7 5.1 1.9
## 144 virginica 6.8 3.2 5.9 2.3
## 145 virginica 6.7 3.3 5.7 2.5
## 146 virginica 6.7 3.0 5.2 2.3
## 147 virginica 6.3 2.5 5.0 1.9
## 148 virginica 6.5 3.0 5.2 2.0
## 149 virginica 6.2 3.4 5.4 2.3
## 150 virginica 5.9 3.0 5.1 1.8
# Drop variables
select(iris, -starts_with("Petal"))
## Sepal.Length Sepal.Width Species
## 1 5.1 3.5 setosa
## 2 4.9 3.0 setosa
## 3 4.7 3.2 setosa
## 4 4.6 3.1 setosa
## 5 5.0 3.6 setosa
## 6 5.4 3.9 setosa
## 7 4.6 3.4 setosa
## 8 5.0 3.4 setosa
## 9 4.4 2.9 setosa
## 10 4.9 3.1 setosa
## 11 5.4 3.7 setosa
## 12 4.8 3.4 setosa
## 13 4.8 3.0 setosa
## 14 4.3 3.0 setosa
## 15 5.8 4.0 setosa
## 16 5.7 4.4 setosa
## 17 5.4 3.9 setosa
## 18 5.1 3.5 setosa
## 19 5.7 3.8 setosa
## 20 5.1 3.8 setosa
## 21 5.4 3.4 setosa
## 22 5.1 3.7 setosa
## 23 4.6 3.6 setosa
## 24 5.1 3.3 setosa
## 25 4.8 3.4 setosa
## 26 5.0 3.0 setosa
## 27 5.0 3.4 setosa
## 28 5.2 3.5 setosa
## 29 5.2 3.4 setosa
## 30 4.7 3.2 setosa
## 31 4.8 3.1 setosa
## 32 5.4 3.4 setosa
## 33 5.2 4.1 setosa
## 34 5.5 4.2 setosa
## 35 4.9 3.1 setosa
## 36 5.0 3.2 setosa
## 37 5.5 3.5 setosa
## 38 4.9 3.6 setosa
## 39 4.4 3.0 setosa
## 40 5.1 3.4 setosa
## 41 5.0 3.5 setosa
## 42 4.5 2.3 setosa
## 43 4.4 3.2 setosa
## 44 5.0 3.5 setosa
## 45 5.1 3.8 setosa
## 46 4.8 3.0 setosa
## 47 5.1 3.8 setosa
## 48 4.6 3.2 setosa
## 49 5.3 3.7 setosa
## 50 5.0 3.3 setosa
## 51 7.0 3.2 versicolor
## 52 6.4 3.2 versicolor
## 53 6.9 3.1 versicolor
## 54 5.5 2.3 versicolor
## 55 6.5 2.8 versicolor
## 56 5.7 2.8 versicolor
## 57 6.3 3.3 versicolor
## 58 4.9 2.4 versicolor
## 59 6.6 2.9 versicolor
## 60 5.2 2.7 versicolor
## 61 5.0 2.0 versicolor
## 62 5.9 3.0 versicolor
## 63 6.0 2.2 versicolor
## 64 6.1 2.9 versicolor
## 65 5.6 2.9 versicolor
## 66 6.7 3.1 versicolor
## 67 5.6 3.0 versicolor
## 68 5.8 2.7 versicolor
## 69 6.2 2.2 versicolor
## 70 5.6 2.5 versicolor
## 71 5.9 3.2 versicolor
## 72 6.1 2.8 versicolor
## 73 6.3 2.5 versicolor
## 74 6.1 2.8 versicolor
## 75 6.4 2.9 versicolor
## 76 6.6 3.0 versicolor
## 77 6.8 2.8 versicolor
## 78 6.7 3.0 versicolor
## 79 6.0 2.9 versicolor
## 80 5.7 2.6 versicolor
## 81 5.5 2.4 versicolor
## 82 5.5 2.4 versicolor
## 83 5.8 2.7 versicolor
## 84 6.0 2.7 versicolor
## 85 5.4 3.0 versicolor
## 86 6.0 3.4 versicolor
## 87 6.7 3.1 versicolor
## 88 6.3 2.3 versicolor
## 89 5.6 3.0 versicolor
## 90 5.5 2.5 versicolor
## 91 5.5 2.6 versicolor
## 92 6.1 3.0 versicolor
## 93 5.8 2.6 versicolor
## 94 5.0 2.3 versicolor
## 95 5.6 2.7 versicolor
## 96 5.7 3.0 versicolor
## 97 5.7 2.9 versicolor
## 98 6.2 2.9 versicolor
## 99 5.1 2.5 versicolor
## 100 5.7 2.8 versicolor
## 101 6.3 3.3 virginica
## 102 5.8 2.7 virginica
## 103 7.1 3.0 virginica
## 104 6.3 2.9 virginica
## 105 6.5 3.0 virginica
## 106 7.6 3.0 virginica
## 107 4.9 2.5 virginica
## 108 7.3 2.9 virginica
## 109 6.7 2.5 virginica
## 110 7.2 3.6 virginica
## 111 6.5 3.2 virginica
## 112 6.4 2.7 virginica
## 113 6.8 3.0 virginica
## 114 5.7 2.5 virginica
## 115 5.8 2.8 virginica
## 116 6.4 3.2 virginica
## 117 6.5 3.0 virginica
## 118 7.7 3.8 virginica
## 119 7.7 2.6 virginica
## 120 6.0 2.2 virginica
## 121 6.9 3.2 virginica
## 122 5.6 2.8 virginica
## 123 7.7 2.8 virginica
## 124 6.3 2.7 virginica
## 125 6.7 3.3 virginica
## 126 7.2 3.2 virginica
## 127 6.2 2.8 virginica
## 128 6.1 3.0 virginica
## 129 6.4 2.8 virginica
## 130 7.2 3.0 virginica
## 131 7.4 2.8 virginica
## 132 7.9 3.8 virginica
## 133 6.4 2.8 virginica
## 134 6.3 2.8 virginica
## 135 6.1 2.6 virginica
## 136 7.7 3.0 virginica
## 137 6.3 3.4 virginica
## 138 6.4 3.1 virginica
## 139 6.0 3.0 virginica
## 140 6.9 3.1 virginica
## 141 6.7 3.1 virginica
## 142 6.9 3.1 virginica
## 143 5.8 2.7 virginica
## 144 6.8 3.2 virginica
## 145 6.7 3.3 virginica
## 146 6.7 3.0 virginica
## 147 6.3 2.5 virginica
## 148 6.5 3.0 virginica
## 149 6.2 3.4 virginica
## 150 5.9 3.0 virginica
select(iris, -ends_with("Width"))
## Sepal.Length Petal.Length Species
## 1 5.1 1.4 setosa
## 2 4.9 1.4 setosa
## 3 4.7 1.3 setosa
## 4 4.6 1.5 setosa
## 5 5.0 1.4 setosa
## 6 5.4 1.7 setosa
## 7 4.6 1.4 setosa
## 8 5.0 1.5 setosa
## 9 4.4 1.4 setosa
## 10 4.9 1.5 setosa
## 11 5.4 1.5 setosa
## 12 4.8 1.6 setosa
## 13 4.8 1.4 setosa
## 14 4.3 1.1 setosa
## 15 5.8 1.2 setosa
## 16 5.7 1.5 setosa
## 17 5.4 1.3 setosa
## 18 5.1 1.4 setosa
## 19 5.7 1.7 setosa
## 20 5.1 1.5 setosa
## 21 5.4 1.7 setosa
## 22 5.1 1.5 setosa
## 23 4.6 1.0 setosa
## 24 5.1 1.7 setosa
## 25 4.8 1.9 setosa
## 26 5.0 1.6 setosa
## 27 5.0 1.6 setosa
## 28 5.2 1.5 setosa
## 29 5.2 1.4 setosa
## 30 4.7 1.6 setosa
## 31 4.8 1.6 setosa
## 32 5.4 1.5 setosa
## 33 5.2 1.5 setosa
## 34 5.5 1.4 setosa
## 35 4.9 1.5 setosa
## 36 5.0 1.2 setosa
## 37 5.5 1.3 setosa
## 38 4.9 1.4 setosa
## 39 4.4 1.3 setosa
## 40 5.1 1.5 setosa
## 41 5.0 1.3 setosa
## 42 4.5 1.3 setosa
## 43 4.4 1.3 setosa
## 44 5.0 1.6 setosa
## 45 5.1 1.9 setosa
## 46 4.8 1.4 setosa
## 47 5.1 1.6 setosa
## 48 4.6 1.4 setosa
## 49 5.3 1.5 setosa
## 50 5.0 1.4 setosa
## 51 7.0 4.7 versicolor
## 52 6.4 4.5 versicolor
## 53 6.9 4.9 versicolor
## 54 5.5 4.0 versicolor
## 55 6.5 4.6 versicolor
## 56 5.7 4.5 versicolor
## 57 6.3 4.7 versicolor
## 58 4.9 3.3 versicolor
## 59 6.6 4.6 versicolor
## 60 5.2 3.9 versicolor
## 61 5.0 3.5 versicolor
## 62 5.9 4.2 versicolor
## 63 6.0 4.0 versicolor
## 64 6.1 4.7 versicolor
## 65 5.6 3.6 versicolor
## 66 6.7 4.4 versicolor
## 67 5.6 4.5 versicolor
## 68 5.8 4.1 versicolor
## 69 6.2 4.5 versicolor
## 70 5.6 3.9 versicolor
## 71 5.9 4.8 versicolor
## 72 6.1 4.0 versicolor
## 73 6.3 4.9 versicolor
## 74 6.1 4.7 versicolor
## 75 6.4 4.3 versicolor
## 76 6.6 4.4 versicolor
## 77 6.8 4.8 versicolor
## 78 6.7 5.0 versicolor
## 79 6.0 4.5 versicolor
## 80 5.7 3.5 versicolor
## 81 5.5 3.8 versicolor
## 82 5.5 3.7 versicolor
## 83 5.8 3.9 versicolor
## 84 6.0 5.1 versicolor
## 85 5.4 4.5 versicolor
## 86 6.0 4.5 versicolor
## 87 6.7 4.7 versicolor
## 88 6.3 4.4 versicolor
## 89 5.6 4.1 versicolor
## 90 5.5 4.0 versicolor
## 91 5.5 4.4 versicolor
## 92 6.1 4.6 versicolor
## 93 5.8 4.0 versicolor
## 94 5.0 3.3 versicolor
## 95 5.6 4.2 versicolor
## 96 5.7 4.2 versicolor
## 97 5.7 4.2 versicolor
## 98 6.2 4.3 versicolor
## 99 5.1 3.0 versicolor
## 100 5.7 4.1 versicolor
## 101 6.3 6.0 virginica
## 102 5.8 5.1 virginica
## 103 7.1 5.9 virginica
## 104 6.3 5.6 virginica
## 105 6.5 5.8 virginica
## 106 7.6 6.6 virginica
## 107 4.9 4.5 virginica
## 108 7.3 6.3 virginica
## 109 6.7 5.8 virginica
## 110 7.2 6.1 virginica
## 111 6.5 5.1 virginica
## 112 6.4 5.3 virginica
## 113 6.8 5.5 virginica
## 114 5.7 5.0 virginica
## 115 5.8 5.1 virginica
## 116 6.4 5.3 virginica
## 117 6.5 5.5 virginica
## 118 7.7 6.7 virginica
## 119 7.7 6.9 virginica
## 120 6.0 5.0 virginica
## 121 6.9 5.7 virginica
## 122 5.6 4.9 virginica
## 123 7.7 6.7 virginica
## 124 6.3 4.9 virginica
## 125 6.7 5.7 virginica
## 126 7.2 6.0 virginica
## 127 6.2 4.8 virginica
## 128 6.1 4.9 virginica
## 129 6.4 5.6 virginica
## 130 7.2 5.8 virginica
## 131 7.4 6.1 virginica
## 132 7.9 6.4 virginica
## 133 6.4 5.6 virginica
## 134 6.3 5.1 virginica
## 135 6.1 5.6 virginica
## 136 7.7 6.1 virginica
## 137 6.3 5.6 virginica
## 138 6.4 5.5 virginica
## 139 6.0 4.8 virginica
## 140 6.9 5.4 virginica
## 141 6.7 5.6 virginica
## 142 6.9 5.1 virginica
## 143 5.8 5.1 virginica
## 144 6.8 5.9 virginica
## 145 6.7 5.7 virginica
## 146 6.7 5.2 virginica
## 147 6.3 5.0 virginica
## 148 6.5 5.2 virginica
## 149 6.2 5.4 virginica
## 150 5.9 5.1 virginica
select(iris, -contains("etal"))
## Sepal.Length Sepal.Width Species
## 1 5.1 3.5 setosa
## 2 4.9 3.0 setosa
## 3 4.7 3.2 setosa
## 4 4.6 3.1 setosa
## 5 5.0 3.6 setosa
## 6 5.4 3.9 setosa
## 7 4.6 3.4 setosa
## 8 5.0 3.4 setosa
## 9 4.4 2.9 setosa
## 10 4.9 3.1 setosa
## 11 5.4 3.7 setosa
## 12 4.8 3.4 setosa
## 13 4.8 3.0 setosa
## 14 4.3 3.0 setosa
## 15 5.8 4.0 setosa
## 16 5.7 4.4 setosa
## 17 5.4 3.9 setosa
## 18 5.1 3.5 setosa
## 19 5.7 3.8 setosa
## 20 5.1 3.8 setosa
## 21 5.4 3.4 setosa
## 22 5.1 3.7 setosa
## 23 4.6 3.6 setosa
## 24 5.1 3.3 setosa
## 25 4.8 3.4 setosa
## 26 5.0 3.0 setosa
## 27 5.0 3.4 setosa
## 28 5.2 3.5 setosa
## 29 5.2 3.4 setosa
## 30 4.7 3.2 setosa
## 31 4.8 3.1 setosa
## 32 5.4 3.4 setosa
## 33 5.2 4.1 setosa
## 34 5.5 4.2 setosa
## 35 4.9 3.1 setosa
## 36 5.0 3.2 setosa
## 37 5.5 3.5 setosa
## 38 4.9 3.6 setosa
## 39 4.4 3.0 setosa
## 40 5.1 3.4 setosa
## 41 5.0 3.5 setosa
## 42 4.5 2.3 setosa
## 43 4.4 3.2 setosa
## 44 5.0 3.5 setosa
## 45 5.1 3.8 setosa
## 46 4.8 3.0 setosa
## 47 5.1 3.8 setosa
## 48 4.6 3.2 setosa
## 49 5.3 3.7 setosa
## 50 5.0 3.3 setosa
## 51 7.0 3.2 versicolor
## 52 6.4 3.2 versicolor
## 53 6.9 3.1 versicolor
## 54 5.5 2.3 versicolor
## 55 6.5 2.8 versicolor
## 56 5.7 2.8 versicolor
## 57 6.3 3.3 versicolor
## 58 4.9 2.4 versicolor
## 59 6.6 2.9 versicolor
## 60 5.2 2.7 versicolor
## 61 5.0 2.0 versicolor
## 62 5.9 3.0 versicolor
## 63 6.0 2.2 versicolor
## 64 6.1 2.9 versicolor
## 65 5.6 2.9 versicolor
## 66 6.7 3.1 versicolor
## 67 5.6 3.0 versicolor
## 68 5.8 2.7 versicolor
## 69 6.2 2.2 versicolor
## 70 5.6 2.5 versicolor
## 71 5.9 3.2 versicolor
## 72 6.1 2.8 versicolor
## 73 6.3 2.5 versicolor
## 74 6.1 2.8 versicolor
## 75 6.4 2.9 versicolor
## 76 6.6 3.0 versicolor
## 77 6.8 2.8 versicolor
## 78 6.7 3.0 versicolor
## 79 6.0 2.9 versicolor
## 80 5.7 2.6 versicolor
## 81 5.5 2.4 versicolor
## 82 5.5 2.4 versicolor
## 83 5.8 2.7 versicolor
## 84 6.0 2.7 versicolor
## 85 5.4 3.0 versicolor
## 86 6.0 3.4 versicolor
## 87 6.7 3.1 versicolor
## 88 6.3 2.3 versicolor
## 89 5.6 3.0 versicolor
## 90 5.5 2.5 versicolor
## 91 5.5 2.6 versicolor
## 92 6.1 3.0 versicolor
## 93 5.8 2.6 versicolor
## 94 5.0 2.3 versicolor
## 95 5.6 2.7 versicolor
## 96 5.7 3.0 versicolor
## 97 5.7 2.9 versicolor
## 98 6.2 2.9 versicolor
## 99 5.1 2.5 versicolor
## 100 5.7 2.8 versicolor
## 101 6.3 3.3 virginica
## 102 5.8 2.7 virginica
## 103 7.1 3.0 virginica
## 104 6.3 2.9 virginica
## 105 6.5 3.0 virginica
## 106 7.6 3.0 virginica
## 107 4.9 2.5 virginica
## 108 7.3 2.9 virginica
## 109 6.7 2.5 virginica
## 110 7.2 3.6 virginica
## 111 6.5 3.2 virginica
## 112 6.4 2.7 virginica
## 113 6.8 3.0 virginica
## 114 5.7 2.5 virginica
## 115 5.8 2.8 virginica
## 116 6.4 3.2 virginica
## 117 6.5 3.0 virginica
## 118 7.7 3.8 virginica
## 119 7.7 2.6 virginica
## 120 6.0 2.2 virginica
## 121 6.9 3.2 virginica
## 122 5.6 2.8 virginica
## 123 7.7 2.8 virginica
## 124 6.3 2.7 virginica
## 125 6.7 3.3 virginica
## 126 7.2 3.2 virginica
## 127 6.2 2.8 virginica
## 128 6.1 3.0 virginica
## 129 6.4 2.8 virginica
## 130 7.2 3.0 virginica
## 131 7.4 2.8 virginica
## 132 7.9 3.8 virginica
## 133 6.4 2.8 virginica
## 134 6.3 2.8 virginica
## 135 6.1 2.6 virginica
## 136 7.7 3.0 virginica
## 137 6.3 3.4 virginica
## 138 6.4 3.1 virginica
## 139 6.0 3.0 virginica
## 140 6.9 3.1 virginica
## 141 6.7 3.1 virginica
## 142 6.9 3.1 virginica
## 143 5.8 2.7 virginica
## 144 6.8 3.2 virginica
## 145 6.7 3.3 virginica
## 146 6.7 3.0 virginica
## 147 6.3 2.5 virginica
## 148 6.5 3.0 virginica
## 149 6.2 3.4 virginica
## 150 5.9 3.0 virginica
select(iris, -matches(".t."))
## Species
## 1 setosa
## 2 setosa
## 3 setosa
## 4 setosa
## 5 setosa
## 6 setosa
## 7 setosa
## 8 setosa
## 9 setosa
## 10 setosa
## 11 setosa
## 12 setosa
## 13 setosa
## 14 setosa
## 15 setosa
## 16 setosa
## 17 setosa
## 18 setosa
## 19 setosa
## 20 setosa
## 21 setosa
## 22 setosa
## 23 setosa
## 24 setosa
## 25 setosa
## 26 setosa
## 27 setosa
## 28 setosa
## 29 setosa
## 30 setosa
## 31 setosa
## 32 setosa
## 33 setosa
## 34 setosa
## 35 setosa
## 36 setosa
## 37 setosa
## 38 setosa
## 39 setosa
## 40 setosa
## 41 setosa
## 42 setosa
## 43 setosa
## 44 setosa
## 45 setosa
## 46 setosa
## 47 setosa
## 48 setosa
## 49 setosa
## 50 setosa
## 51 versicolor
## 52 versicolor
## 53 versicolor
## 54 versicolor
## 55 versicolor
## 56 versicolor
## 57 versicolor
## 58 versicolor
## 59 versicolor
## 60 versicolor
## 61 versicolor
## 62 versicolor
## 63 versicolor
## 64 versicolor
## 65 versicolor
## 66 versicolor
## 67 versicolor
## 68 versicolor
## 69 versicolor
## 70 versicolor
## 71 versicolor
## 72 versicolor
## 73 versicolor
## 74 versicolor
## 75 versicolor
## 76 versicolor
## 77 versicolor
## 78 versicolor
## 79 versicolor
## 80 versicolor
## 81 versicolor
## 82 versicolor
## 83 versicolor
## 84 versicolor
## 85 versicolor
## 86 versicolor
## 87 versicolor
## 88 versicolor
## 89 versicolor
## 90 versicolor
## 91 versicolor
## 92 versicolor
## 93 versicolor
## 94 versicolor
## 95 versicolor
## 96 versicolor
## 97 versicolor
## 98 versicolor
## 99 versicolor
## 100 versicolor
## 101 virginica
## 102 virginica
## 103 virginica
## 104 virginica
## 105 virginica
## 106 virginica
## 107 virginica
## 108 virginica
## 109 virginica
## 110 virginica
## 111 virginica
## 112 virginica
## 113 virginica
## 114 virginica
## 115 virginica
## 116 virginica
## 117 virginica
## 118 virginica
## 119 virginica
## 120 virginica
## 121 virginica
## 122 virginica
## 123 virginica
## 124 virginica
## 125 virginica
## 126 virginica
## 127 virginica
## 128 virginica
## 129 virginica
## 130 virginica
## 131 virginica
## 132 virginica
## 133 virginica
## 134 virginica
## 135 virginica
## 136 virginica
## 137 virginica
## 138 virginica
## 139 virginica
## 140 virginica
## 141 virginica
## 142 virginica
## 143 virginica
## 144 virginica
## 145 virginica
## 146 virginica
## 147 virginica
## 148 virginica
## 149 virginica
## 150 virginica
select(iris, -Petal.Length, -Petal.Width)
## Sepal.Length Sepal.Width Species
## 1 5.1 3.5 setosa
## 2 4.9 3.0 setosa
## 3 4.7 3.2 setosa
## 4 4.6 3.1 setosa
## 5 5.0 3.6 setosa
## 6 5.4 3.9 setosa
## 7 4.6 3.4 setosa
## 8 5.0 3.4 setosa
## 9 4.4 2.9 setosa
## 10 4.9 3.1 setosa
## 11 5.4 3.7 setosa
## 12 4.8 3.4 setosa
## 13 4.8 3.0 setosa
## 14 4.3 3.0 setosa
## 15 5.8 4.0 setosa
## 16 5.7 4.4 setosa
## 17 5.4 3.9 setosa
## 18 5.1 3.5 setosa
## 19 5.7 3.8 setosa
## 20 5.1 3.8 setosa
## 21 5.4 3.4 setosa
## 22 5.1 3.7 setosa
## 23 4.6 3.6 setosa
## 24 5.1 3.3 setosa
## 25 4.8 3.4 setosa
## 26 5.0 3.0 setosa
## 27 5.0 3.4 setosa
## 28 5.2 3.5 setosa
## 29 5.2 3.4 setosa
## 30 4.7 3.2 setosa
## 31 4.8 3.1 setosa
## 32 5.4 3.4 setosa
## 33 5.2 4.1 setosa
## 34 5.5 4.2 setosa
## 35 4.9 3.1 setosa
## 36 5.0 3.2 setosa
## 37 5.5 3.5 setosa
## 38 4.9 3.6 setosa
## 39 4.4 3.0 setosa
## 40 5.1 3.4 setosa
## 41 5.0 3.5 setosa
## 42 4.5 2.3 setosa
## 43 4.4 3.2 setosa
## 44 5.0 3.5 setosa
## 45 5.1 3.8 setosa
## 46 4.8 3.0 setosa
## 47 5.1 3.8 setosa
## 48 4.6 3.2 setosa
## 49 5.3 3.7 setosa
## 50 5.0 3.3 setosa
## 51 7.0 3.2 versicolor
## 52 6.4 3.2 versicolor
## 53 6.9 3.1 versicolor
## 54 5.5 2.3 versicolor
## 55 6.5 2.8 versicolor
## 56 5.7 2.8 versicolor
## 57 6.3 3.3 versicolor
## 58 4.9 2.4 versicolor
## 59 6.6 2.9 versicolor
## 60 5.2 2.7 versicolor
## 61 5.0 2.0 versicolor
## 62 5.9 3.0 versicolor
## 63 6.0 2.2 versicolor
## 64 6.1 2.9 versicolor
## 65 5.6 2.9 versicolor
## 66 6.7 3.1 versicolor
## 67 5.6 3.0 versicolor
## 68 5.8 2.7 versicolor
## 69 6.2 2.2 versicolor
## 70 5.6 2.5 versicolor
## 71 5.9 3.2 versicolor
## 72 6.1 2.8 versicolor
## 73 6.3 2.5 versicolor
## 74 6.1 2.8 versicolor
## 75 6.4 2.9 versicolor
## 76 6.6 3.0 versicolor
## 77 6.8 2.8 versicolor
## 78 6.7 3.0 versicolor
## 79 6.0 2.9 versicolor
## 80 5.7 2.6 versicolor
## 81 5.5 2.4 versicolor
## 82 5.5 2.4 versicolor
## 83 5.8 2.7 versicolor
## 84 6.0 2.7 versicolor
## 85 5.4 3.0 versicolor
## 86 6.0 3.4 versicolor
## 87 6.7 3.1 versicolor
## 88 6.3 2.3 versicolor
## 89 5.6 3.0 versicolor
## 90 5.5 2.5 versicolor
## 91 5.5 2.6 versicolor
## 92 6.1 3.0 versicolor
## 93 5.8 2.6 versicolor
## 94 5.0 2.3 versicolor
## 95 5.6 2.7 versicolor
## 96 5.7 3.0 versicolor
## 97 5.7 2.9 versicolor
## 98 6.2 2.9 versicolor
## 99 5.1 2.5 versicolor
## 100 5.7 2.8 versicolor
## 101 6.3 3.3 virginica
## 102 5.8 2.7 virginica
## 103 7.1 3.0 virginica
## 104 6.3 2.9 virginica
## 105 6.5 3.0 virginica
## 106 7.6 3.0 virginica
## 107 4.9 2.5 virginica
## 108 7.3 2.9 virginica
## 109 6.7 2.5 virginica
## 110 7.2 3.6 virginica
## 111 6.5 3.2 virginica
## 112 6.4 2.7 virginica
## 113 6.8 3.0 virginica
## 114 5.7 2.5 virginica
## 115 5.8 2.8 virginica
## 116 6.4 3.2 virginica
## 117 6.5 3.0 virginica
## 118 7.7 3.8 virginica
## 119 7.7 2.6 virginica
## 120 6.0 2.2 virginica
## 121 6.9 3.2 virginica
## 122 5.6 2.8 virginica
## 123 7.7 2.8 virginica
## 124 6.3 2.7 virginica
## 125 6.7 3.3 virginica
## 126 7.2 3.2 virginica
## 127 6.2 2.8 virginica
## 128 6.1 3.0 virginica
## 129 6.4 2.8 virginica
## 130 7.2 3.0 virginica
## 131 7.4 2.8 virginica
## 132 7.9 3.8 virginica
## 133 6.4 2.8 virginica
## 134 6.3 2.8 virginica
## 135 6.1 2.6 virginica
## 136 7.7 3.0 virginica
## 137 6.3 3.4 virginica
## 138 6.4 3.1 virginica
## 139 6.0 3.0 virginica
## 140 6.9 3.1 virginica
## 141 6.7 3.1 virginica
## 142 6.9 3.1 virginica
## 143 5.8 2.7 virginica
## 144 6.8 3.2 virginica
## 145 6.7 3.3 virginica
## 146 6.7 3.0 virginica
## 147 6.3 2.5 virginica
## 148 6.5 3.0 virginica
## 149 6.2 3.4 virginica
## 150 5.9 3.0 virginica
select(iris, -Species)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## 7 4.6 3.4 1.4 0.3
## 8 5.0 3.4 1.5 0.2
## 9 4.4 2.9 1.4 0.2
## 10 4.9 3.1 1.5 0.1
## 11 5.4 3.7 1.5 0.2
## 12 4.8 3.4 1.6 0.2
## 13 4.8 3.0 1.4 0.1
## 14 4.3 3.0 1.1 0.1
## 15 5.8 4.0 1.2 0.2
## 16 5.7 4.4 1.5 0.4
## 17 5.4 3.9 1.3 0.4
## 18 5.1 3.5 1.4 0.3
## 19 5.7 3.8 1.7 0.3
## 20 5.1 3.8 1.5 0.3
## 21 5.4 3.4 1.7 0.2
## 22 5.1 3.7 1.5 0.4
## 23 4.6 3.6 1.0 0.2
## 24 5.1 3.3 1.7 0.5
## 25 4.8 3.4 1.9 0.2
## 26 5.0 3.0 1.6 0.2
## 27 5.0 3.4 1.6 0.4
## 28 5.2 3.5 1.5 0.2
## 29 5.2 3.4 1.4 0.2
## 30 4.7 3.2 1.6 0.2
## 31 4.8 3.1 1.6 0.2
## 32 5.4 3.4 1.5 0.4
## 33 5.2 4.1 1.5 0.1
## 34 5.5 4.2 1.4 0.2
## 35 4.9 3.1 1.5 0.2
## 36 5.0 3.2 1.2 0.2
## 37 5.5 3.5 1.3 0.2
## 38 4.9 3.6 1.4 0.1
## 39 4.4 3.0 1.3 0.2
## 40 5.1 3.4 1.5 0.2
## 41 5.0 3.5 1.3 0.3
## 42 4.5 2.3 1.3 0.3
## 43 4.4 3.2 1.3 0.2
## 44 5.0 3.5 1.6 0.6
## 45 5.1 3.8 1.9 0.4
## 46 4.8 3.0 1.4 0.3
## 47 5.1 3.8 1.6 0.2
## 48 4.6 3.2 1.4 0.2
## 49 5.3 3.7 1.5 0.2
## 50 5.0 3.3 1.4 0.2
## 51 7.0 3.2 4.7 1.4
## 52 6.4 3.2 4.5 1.5
## 53 6.9 3.1 4.9 1.5
## 54 5.5 2.3 4.0 1.3
## 55 6.5 2.8 4.6 1.5
## 56 5.7 2.8 4.5 1.3
## 57 6.3 3.3 4.7 1.6
## 58 4.9 2.4 3.3 1.0
## 59 6.6 2.9 4.6 1.3
## 60 5.2 2.7 3.9 1.4
## 61 5.0 2.0 3.5 1.0
## 62 5.9 3.0 4.2 1.5
## 63 6.0 2.2 4.0 1.0
## 64 6.1 2.9 4.7 1.4
## 65 5.6 2.9 3.6 1.3
## 66 6.7 3.1 4.4 1.4
## 67 5.6 3.0 4.5 1.5
## 68 5.8 2.7 4.1 1.0
## 69 6.2 2.2 4.5 1.5
## 70 5.6 2.5 3.9 1.1
## 71 5.9 3.2 4.8 1.8
## 72 6.1 2.8 4.0 1.3
## 73 6.3 2.5 4.9 1.5
## 74 6.1 2.8 4.7 1.2
## 75 6.4 2.9 4.3 1.3
## 76 6.6 3.0 4.4 1.4
## 77 6.8 2.8 4.8 1.4
## 78 6.7 3.0 5.0 1.7
## 79 6.0 2.9 4.5 1.5
## 80 5.7 2.6 3.5 1.0
## 81 5.5 2.4 3.8 1.1
## 82 5.5 2.4 3.7 1.0
## 83 5.8 2.7 3.9 1.2
## 84 6.0 2.7 5.1 1.6
## 85 5.4 3.0 4.5 1.5
## 86 6.0 3.4 4.5 1.6
## 87 6.7 3.1 4.7 1.5
## 88 6.3 2.3 4.4 1.3
## 89 5.6 3.0 4.1 1.3
## 90 5.5 2.5 4.0 1.3
## 91 5.5 2.6 4.4 1.2
## 92 6.1 3.0 4.6 1.4
## 93 5.8 2.6 4.0 1.2
## 94 5.0 2.3 3.3 1.0
## 95 5.6 2.7 4.2 1.3
## 96 5.7 3.0 4.2 1.2
## 97 5.7 2.9 4.2 1.3
## 98 6.2 2.9 4.3 1.3
## 99 5.1 2.5 3.0 1.1
## 100 5.7 2.8 4.1 1.3
## 101 6.3 3.3 6.0 2.5
## 102 5.8 2.7 5.1 1.9
## 103 7.1 3.0 5.9 2.1
## 104 6.3 2.9 5.6 1.8
## 105 6.5 3.0 5.8 2.2
## 106 7.6 3.0 6.6 2.1
## 107 4.9 2.5 4.5 1.7
## 108 7.3 2.9 6.3 1.8
## 109 6.7 2.5 5.8 1.8
## 110 7.2 3.6 6.1 2.5
## 111 6.5 3.2 5.1 2.0
## 112 6.4 2.7 5.3 1.9
## 113 6.8 3.0 5.5 2.1
## 114 5.7 2.5 5.0 2.0
## 115 5.8 2.8 5.1 2.4
## 116 6.4 3.2 5.3 2.3
## 117 6.5 3.0 5.5 1.8
## 118 7.7 3.8 6.7 2.2
## 119 7.7 2.6 6.9 2.3
## 120 6.0 2.2 5.0 1.5
## 121 6.9 3.2 5.7 2.3
## 122 5.6 2.8 4.9 2.0
## 123 7.7 2.8 6.7 2.0
## 124 6.3 2.7 4.9 1.8
## 125 6.7 3.3 5.7 2.1
## 126 7.2 3.2 6.0 1.8
## 127 6.2 2.8 4.8 1.8
## 128 6.1 3.0 4.9 1.8
## 129 6.4 2.8 5.6 2.1
## 130 7.2 3.0 5.8 1.6
## 131 7.4 2.8 6.1 1.9
## 132 7.9 3.8 6.4 2.0
## 133 6.4 2.8 5.6 2.2
## 134 6.3 2.8 5.1 1.5
## 135 6.1 2.6 5.6 1.4
## 136 7.7 3.0 6.1 2.3
## 137 6.3 3.4 5.6 2.4
## 138 6.4 3.1 5.5 1.8
## 139 6.0 3.0 4.8 1.8
## 140 6.9 3.1 5.4 2.1
## 141 6.7 3.1 5.6 2.4
## 142 6.9 3.1 5.1 2.3
## 143 5.8 2.7 5.1 1.9
## 144 6.8 3.2 5.9 2.3
## 145 6.7 3.3 5.7 2.5
## 146 6.7 3.0 5.2 2.3
## 147 6.3 2.5 5.0 1.9
## 148 6.5 3.0 5.2 2.0
## 149 6.2 3.4 5.4 2.3
## 150 5.9 3.0 5.1 1.8
# Summarise data into single row of values.
summarise(iris, avg = mean(Sepal.Length))
## avg
## 1 5.843333
# Apply summary function to each column.
summarise_each(iris, funs(mean))
## Warning in mean.default(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, :
## argument is not numeric or logical: returning NA
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.843333 3.057333 3.758 1.199333 NA
# Count number of rows with each unique value of
# variable (with or without weights).
count(iris, Species, wt = Sepal.Length)
## # A tibble: 3 × 2
## Species n
## <fctr> <dbl>
## 1 setosa 250.3
## 2 versicolor 296.8
## 3 virginica 329.4
# Compute and append one or more new columns.
mutate(iris, sepal = Sepal.Length + Sepal.Width)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species sepal
## 1 5.1 3.5 1.4 0.2 setosa 8.6
## 2 4.9 3.0 1.4 0.2 setosa 7.9
## 3 4.7 3.2 1.3 0.2 setosa 7.9
## 4 4.6 3.1 1.5 0.2 setosa 7.7
## 5 5.0 3.6 1.4 0.2 setosa 8.6
## 6 5.4 3.9 1.7 0.4 setosa 9.3
## 7 4.6 3.4 1.4 0.3 setosa 8.0
## 8 5.0 3.4 1.5 0.2 setosa 8.4
## 9 4.4 2.9 1.4 0.2 setosa 7.3
## 10 4.9 3.1 1.5 0.1 setosa 8.0
## 11 5.4 3.7 1.5 0.2 setosa 9.1
## 12 4.8 3.4 1.6 0.2 setosa 8.2
## 13 4.8 3.0 1.4 0.1 setosa 7.8
## 14 4.3 3.0 1.1 0.1 setosa 7.3
## 15 5.8 4.0 1.2 0.2 setosa 9.8
## 16 5.7 4.4 1.5 0.4 setosa 10.1
## 17 5.4 3.9 1.3 0.4 setosa 9.3
## 18 5.1 3.5 1.4 0.3 setosa 8.6
## 19 5.7 3.8 1.7 0.3 setosa 9.5
## 20 5.1 3.8 1.5 0.3 setosa 8.9
## 21 5.4 3.4 1.7 0.2 setosa 8.8
## 22 5.1 3.7 1.5 0.4 setosa 8.8
## 23 4.6 3.6 1.0 0.2 setosa 8.2
## 24 5.1 3.3 1.7 0.5 setosa 8.4
## 25 4.8 3.4 1.9 0.2 setosa 8.2
## 26 5.0 3.0 1.6 0.2 setosa 8.0
## 27 5.0 3.4 1.6 0.4 setosa 8.4
## 28 5.2 3.5 1.5 0.2 setosa 8.7
## 29 5.2 3.4 1.4 0.2 setosa 8.6
## 30 4.7 3.2 1.6 0.2 setosa 7.9
## 31 4.8 3.1 1.6 0.2 setosa 7.9
## 32 5.4 3.4 1.5 0.4 setosa 8.8
## 33 5.2 4.1 1.5 0.1 setosa 9.3
## 34 5.5 4.2 1.4 0.2 setosa 9.7
## 35 4.9 3.1 1.5 0.2 setosa 8.0
## 36 5.0 3.2 1.2 0.2 setosa 8.2
## 37 5.5 3.5 1.3 0.2 setosa 9.0
## 38 4.9 3.6 1.4 0.1 setosa 8.5
## 39 4.4 3.0 1.3 0.2 setosa 7.4
## 40 5.1 3.4 1.5 0.2 setosa 8.5
## 41 5.0 3.5 1.3 0.3 setosa 8.5
## 42 4.5 2.3 1.3 0.3 setosa 6.8
## 43 4.4 3.2 1.3 0.2 setosa 7.6
## 44 5.0 3.5 1.6 0.6 setosa 8.5
## 45 5.1 3.8 1.9 0.4 setosa 8.9
## 46 4.8 3.0 1.4 0.3 setosa 7.8
## 47 5.1 3.8 1.6 0.2 setosa 8.9
## 48 4.6 3.2 1.4 0.2 setosa 7.8
## 49 5.3 3.7 1.5 0.2 setosa 9.0
## 50 5.0 3.3 1.4 0.2 setosa 8.3
## 51 7.0 3.2 4.7 1.4 versicolor 10.2
## 52 6.4 3.2 4.5 1.5 versicolor 9.6
## 53 6.9 3.1 4.9 1.5 versicolor 10.0
## 54 5.5 2.3 4.0 1.3 versicolor 7.8
## 55 6.5 2.8 4.6 1.5 versicolor 9.3
## 56 5.7 2.8 4.5 1.3 versicolor 8.5
## 57 6.3 3.3 4.7 1.6 versicolor 9.6
## 58 4.9 2.4 3.3 1.0 versicolor 7.3
## 59 6.6 2.9 4.6 1.3 versicolor 9.5
## 60 5.2 2.7 3.9 1.4 versicolor 7.9
## 61 5.0 2.0 3.5 1.0 versicolor 7.0
## 62 5.9 3.0 4.2 1.5 versicolor 8.9
## 63 6.0 2.2 4.0 1.0 versicolor 8.2
## 64 6.1 2.9 4.7 1.4 versicolor 9.0
## 65 5.6 2.9 3.6 1.3 versicolor 8.5
## 66 6.7 3.1 4.4 1.4 versicolor 9.8
## 67 5.6 3.0 4.5 1.5 versicolor 8.6
## 68 5.8 2.7 4.1 1.0 versicolor 8.5
## 69 6.2 2.2 4.5 1.5 versicolor 8.4
## 70 5.6 2.5 3.9 1.1 versicolor 8.1
## 71 5.9 3.2 4.8 1.8 versicolor 9.1
## 72 6.1 2.8 4.0 1.3 versicolor 8.9
## 73 6.3 2.5 4.9 1.5 versicolor 8.8
## 74 6.1 2.8 4.7 1.2 versicolor 8.9
## 75 6.4 2.9 4.3 1.3 versicolor 9.3
## 76 6.6 3.0 4.4 1.4 versicolor 9.6
## 77 6.8 2.8 4.8 1.4 versicolor 9.6
## 78 6.7 3.0 5.0 1.7 versicolor 9.7
## 79 6.0 2.9 4.5 1.5 versicolor 8.9
## 80 5.7 2.6 3.5 1.0 versicolor 8.3
## 81 5.5 2.4 3.8 1.1 versicolor 7.9
## 82 5.5 2.4 3.7 1.0 versicolor 7.9
## 83 5.8 2.7 3.9 1.2 versicolor 8.5
## 84 6.0 2.7 5.1 1.6 versicolor 8.7
## 85 5.4 3.0 4.5 1.5 versicolor 8.4
## 86 6.0 3.4 4.5 1.6 versicolor 9.4
## 87 6.7 3.1 4.7 1.5 versicolor 9.8
## 88 6.3 2.3 4.4 1.3 versicolor 8.6
## 89 5.6 3.0 4.1 1.3 versicolor 8.6
## 90 5.5 2.5 4.0 1.3 versicolor 8.0
## 91 5.5 2.6 4.4 1.2 versicolor 8.1
## 92 6.1 3.0 4.6 1.4 versicolor 9.1
## 93 5.8 2.6 4.0 1.2 versicolor 8.4
## 94 5.0 2.3 3.3 1.0 versicolor 7.3
## 95 5.6 2.7 4.2 1.3 versicolor 8.3
## 96 5.7 3.0 4.2 1.2 versicolor 8.7
## 97 5.7 2.9 4.2 1.3 versicolor 8.6
## 98 6.2 2.9 4.3 1.3 versicolor 9.1
## 99 5.1 2.5 3.0 1.1 versicolor 7.6
## 100 5.7 2.8 4.1 1.3 versicolor 8.5
## 101 6.3 3.3 6.0 2.5 virginica 9.6
## 102 5.8 2.7 5.1 1.9 virginica 8.5
## 103 7.1 3.0 5.9 2.1 virginica 10.1
## 104 6.3 2.9 5.6 1.8 virginica 9.2
## 105 6.5 3.0 5.8 2.2 virginica 9.5
## 106 7.6 3.0 6.6 2.1 virginica 10.6
## 107 4.9 2.5 4.5 1.7 virginica 7.4
## 108 7.3 2.9 6.3 1.8 virginica 10.2
## 109 6.7 2.5 5.8 1.8 virginica 9.2
## 110 7.2 3.6 6.1 2.5 virginica 10.8
## 111 6.5 3.2 5.1 2.0 virginica 9.7
## 112 6.4 2.7 5.3 1.9 virginica 9.1
## 113 6.8 3.0 5.5 2.1 virginica 9.8
## 114 5.7 2.5 5.0 2.0 virginica 8.2
## 115 5.8 2.8 5.1 2.4 virginica 8.6
## 116 6.4 3.2 5.3 2.3 virginica 9.6
## 117 6.5 3.0 5.5 1.8 virginica 9.5
## 118 7.7 3.8 6.7 2.2 virginica 11.5
## 119 7.7 2.6 6.9 2.3 virginica 10.3
## 120 6.0 2.2 5.0 1.5 virginica 8.2
## 121 6.9 3.2 5.7 2.3 virginica 10.1
## 122 5.6 2.8 4.9 2.0 virginica 8.4
## 123 7.7 2.8 6.7 2.0 virginica 10.5
## 124 6.3 2.7 4.9 1.8 virginica 9.0
## 125 6.7 3.3 5.7 2.1 virginica 10.0
## 126 7.2 3.2 6.0 1.8 virginica 10.4
## 127 6.2 2.8 4.8 1.8 virginica 9.0
## 128 6.1 3.0 4.9 1.8 virginica 9.1
## 129 6.4 2.8 5.6 2.1 virginica 9.2
## 130 7.2 3.0 5.8 1.6 virginica 10.2
## 131 7.4 2.8 6.1 1.9 virginica 10.2
## 132 7.9 3.8 6.4 2.0 virginica 11.7
## 133 6.4 2.8 5.6 2.2 virginica 9.2
## 134 6.3 2.8 5.1 1.5 virginica 9.1
## 135 6.1 2.6 5.6 1.4 virginica 8.7
## 136 7.7 3.0 6.1 2.3 virginica 10.7
## 137 6.3 3.4 5.6 2.4 virginica 9.7
## 138 6.4 3.1 5.5 1.8 virginica 9.5
## 139 6.0 3.0 4.8 1.8 virginica 9.0
## 140 6.9 3.1 5.4 2.1 virginica 10.0
## 141 6.7 3.1 5.6 2.4 virginica 9.8
## 142 6.9 3.1 5.1 2.3 virginica 10.0
## 143 5.8 2.7 5.1 1.9 virginica 8.5
## 144 6.8 3.2 5.9 2.3 virginica 10.0
## 145 6.7 3.3 5.7 2.5 virginica 10.0
## 146 6.7 3.0 5.2 2.3 virginica 9.7
## 147 6.3 2.5 5.0 1.9 virginica 8.8
## 148 6.5 3.0 5.2 2.0 virginica 9.5
## 149 6.2 3.4 5.4 2.3 virginica 9.6
## 150 5.9 3.0 5.1 1.8 virginica 8.9
# Apply window function to each column.
mutate_each(iris, funs(min_rank))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 33 126 12 6 1
## 2 17 58 12 6 1
## 3 10 95 5 6 1
## 4 6 84 25 6 1
## 5 23 132 12 6 1
## 6 47 145 45 42 1
## 7 6 114 12 35 1
## 8 23 114 25 6 1
## 9 2 48 12 6 1
## 10 17 84 25 1 1
## 11 47 136 25 6 1
## 12 12 114 38 6 1
## 13 12 58 12 1 1
## 14 1 58 2 1 1
## 15 74 147 3 6 1
## 16 66 150 25 42 1
## 17 47 145 5 42 1
## 18 33 126 12 35 1
## 19 66 139 45 35 1
## 20 33 139 25 35 1
## 21 47 114 45 6 1
## 22 33 136 25 42 1
## 23 6 132 1 6 1
## 24 33 108 45 49 1
## 25 12 114 49 6 1
## 26 23 58 38 6 1
## 27 23 114 38 42 1
## 28 42 126 25 6 1
## 29 42 114 12 6 1
## 30 10 95 38 6 1
## 31 12 84 38 6 1
## 32 47 114 25 42 1
## 33 42 148 25 1 1
## 34 53 149 12 6 1
## 35 17 84 25 6 1
## 36 23 95 3 6 1
## 37 53 126 5 6 1
## 38 17 132 12 1 1
## 39 2 58 5 6 1
## 40 33 114 25 6 1
## 41 23 126 5 35 1
## 42 5 5 5 35 1
## 43 2 95 5 6 1
## 44 23 126 38 50 1
## 45 33 139 49 42 1
## 46 12 58 12 35 1
## 47 33 139 38 6 1
## 48 6 95 12 6 1
## 49 46 136 25 6 1
## 50 23 108 12 6 1
## 51 138 95 91 79 51
## 52 109 95 80 87 51
## 53 134 84 100 87 51
## 54 53 5 62 66 51
## 55 116 34 88 87 51
## 56 66 34 80 66 51
## 57 100 108 91 99 51
## 58 17 9 52 51 51
## 59 121 48 88 66 51
## 60 42 25 59 79 51
## 61 23 1 54 51 51
## 62 81 58 70 87 51
## 63 84 2 62 51 51
## 64 90 48 91 79 51
## 65 60 48 56 66 51
## 66 123 84 76 79 51
## 67 60 58 80 87 51
## 68 74 25 67 51 51
## 69 96 2 80 87 51
## 70 60 12 59 58 51
## 71 81 95 96 105 51
## 72 90 34 62 66 51
## 73 100 12 100 87 51
## 74 90 34 91 61 51
## 75 109 48 74 66 51
## 76 121 58 76 79 51
## 77 131 34 96 79 51
## 78 123 58 105 103 51
## 79 84 48 80 87 51
## 80 66 20 54 51 51
## 81 53 9 58 58 51
## 82 53 9 57 51 51
## 83 74 25 59 61 51
## 84 84 25 109 99 51
## 85 47 58 80 87 51
## 86 84 114 80 99 51
## 87 123 84 91 87 51
## 88 100 5 76 66 51
## 89 60 58 67 66 51
## 90 53 12 62 66 51
## 91 53 20 76 61 51
## 92 90 58 88 79 51
## 93 74 20 62 61 51
## 94 23 5 52 51 51
## 95 60 25 70 66 51
## 96 66 58 70 61 51
## 97 66 48 70 66 51
## 98 96 48 74 66 51
## 99 33 12 51 58 51
## 100 66 34 67 66 51
## 101 100 108 140 148 101
## 102 74 25 109 117 101
## 103 139 58 138 128 101
## 104 100 48 126 105 101
## 105 116 58 135 134 101
## 106 145 58 147 128 101
## 107 17 12 80 103 101
## 108 143 48 145 105 101
## 109 123 12 135 105 101
## 110 140 132 142 148 101
## 111 116 95 109 122 101
## 112 109 25 119 117 101
## 113 131 58 123 128 101
## 114 66 12 105 122 101
## 115 74 34 109 145 101
## 116 109 95 119 137 101
## 117 116 58 123 105 101
## 118 146 139 148 134 101
## 119 146 20 150 137 101
## 120 84 2 105 87 101
## 121 134 95 132 137 101
## 122 60 34 100 122 101
## 123 146 34 148 122 101
## 124 100 25 100 105 101
## 125 123 108 132 128 101
## 126 140 95 140 105 101
## 127 96 34 96 105 101
## 128 90 58 100 105 101
## 129 109 34 126 128 101
## 130 140 58 135 99 101
## 131 144 34 142 117 101
## 132 150 139 146 122 101
## 133 109 34 126 134 101
## 134 100 34 109 87 101
## 135 90 20 126 79 101
## 136 146 58 142 137 101
## 137 100 114 126 145 101
## 138 109 84 123 105 101
## 139 84 58 96 105 101
## 140 134 84 121 128 101
## 141 123 84 126 145 101
## 142 134 84 109 137 101
## 143 74 25 109 117 101
## 144 131 95 138 137 101
## 145 123 108 132 148 101
## 146 123 58 117 137 101
## 147 100 12 105 117 101
## 148 116 58 117 122 101
## 149 96 114 121 137 101
## 150 81 58 109 105 101
# Compute one or more new columns. Drop original columns.
transmute(iris, sepal = Sepal.Length + Sepal.Width)
## sepal
## 1 8.6
## 2 7.9
## 3 7.9
## 4 7.7
## 5 8.6
## 6 9.3
## 7 8.0
## 8 8.4
## 9 7.3
## 10 8.0
## 11 9.1
## 12 8.2
## 13 7.8
## 14 7.3
## 15 9.8
## 16 10.1
## 17 9.3
## 18 8.6
## 19 9.5
## 20 8.9
## 21 8.8
## 22 8.8
## 23 8.2
## 24 8.4
## 25 8.2
## 26 8.0
## 27 8.4
## 28 8.7
## 29 8.6
## 30 7.9
## 31 7.9
## 32 8.8
## 33 9.3
## 34 9.7
## 35 8.0
## 36 8.2
## 37 9.0
## 38 8.5
## 39 7.4
## 40 8.5
## 41 8.5
## 42 6.8
## 43 7.6
## 44 8.5
## 45 8.9
## 46 7.8
## 47 8.9
## 48 7.8
## 49 9.0
## 50 8.3
## 51 10.2
## 52 9.6
## 53 10.0
## 54 7.8
## 55 9.3
## 56 8.5
## 57 9.6
## 58 7.3
## 59 9.5
## 60 7.9
## 61 7.0
## 62 8.9
## 63 8.2
## 64 9.0
## 65 8.5
## 66 9.8
## 67 8.6
## 68 8.5
## 69 8.4
## 70 8.1
## 71 9.1
## 72 8.9
## 73 8.8
## 74 8.9
## 75 9.3
## 76 9.6
## 77 9.6
## 78 9.7
## 79 8.9
## 80 8.3
## 81 7.9
## 82 7.9
## 83 8.5
## 84 8.7
## 85 8.4
## 86 9.4
## 87 9.8
## 88 8.6
## 89 8.6
## 90 8.0
## 91 8.1
## 92 9.1
## 93 8.4
## 94 7.3
## 95 8.3
## 96 8.7
## 97 8.6
## 98 9.1
## 99 7.6
## 100 8.5
## 101 9.6
## 102 8.5
## 103 10.1
## 104 9.2
## 105 9.5
## 106 10.6
## 107 7.4
## 108 10.2
## 109 9.2
## 110 10.8
## 111 9.7
## 112 9.1
## 113 9.8
## 114 8.2
## 115 8.6
## 116 9.6
## 117 9.5
## 118 11.5
## 119 10.3
## 120 8.2
## 121 10.1
## 122 8.4
## 123 10.5
## 124 9.0
## 125 10.0
## 126 10.4
## 127 9.0
## 128 9.1
## 129 9.2
## 130 10.2
## 131 10.2
## 132 11.7
## 133 9.2
## 134 9.1
## 135 8.7
## 136 10.7
## 137 9.7
## 138 9.5
## 139 9.0
## 140 10.0
## 141 9.8
## 142 10.0
## 143 8.5
## 144 10.0
## 145 10.0
## 146 9.7
## 147 8.8
## 148 9.5
## 149 9.6
## 150 8.9
# Group data into rows with the same value of Species.
group_by(iris, Species)
## Source: local data frame [150 x 5]
## Groups: Species [3]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fctr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## # ... with 140 more rows
# Remove grouping information from data frame.
ungroup(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
# Compute separate summary row for each group.
iris %>% group_by(Species) %>% summarise(avg=mean(Sepal.Length))
## # A tibble: 3 × 2
## Species avg
## <fctr> <dbl>
## 1 setosa 5.006
## 2 versicolor 5.936
## 3 virginica 6.588
# Compute new variables by group.
iris %>% group_by(Species) %>% mutate(sepal = Sepal.Length + Sepal.Width)
## Source: local data frame [150 x 6]
## Groups: Species [3]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species sepal
## <dbl> <dbl> <dbl> <dbl> <fctr> <dbl>
## 1 5.1 3.5 1.4 0.2 setosa 8.6
## 2 4.9 3.0 1.4 0.2 setosa 7.9
## 3 4.7 3.2 1.3 0.2 setosa 7.9
## 4 4.6 3.1 1.5 0.2 setosa 7.7
## 5 5.0 3.6 1.4 0.2 setosa 8.6
## 6 5.4 3.9 1.7 0.4 setosa 9.3
## 7 4.6 3.4 1.4 0.3 setosa 8.0
## 8 5.0 3.4 1.5 0.2 setosa 8.4
## 9 4.4 2.9 1.4 0.2 setosa 7.3
## 10 4.9 3.1 1.5 0.1 setosa 8.0
## # ... with 140 more rows
# create vectors x1 and x2
# create a dataframe a
x1<-c("A","B","C")
x2<-c(1,2,3)
a<-data.frame(x1,x2)
# create vectors x1 and x3
# create a dataframe b
x1<-c("A","B","D")
x3<-c("T","F","T")
b<-data.frame(x1,x3)
# Join matching rows from b to a.
left_join(a, b, by = "x1")
## Warning in left_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factors with different levels, coercing to character vector
## x1 x2 x3
## 1 A 1 T
## 2 B 2 F
## 3 C 3 <NA>
# Join matching rows from a to b.
right_join(a, b, by = "x1")
## Warning in right_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factors with different levels, coercing to character vector
## x1 x2 x3
## 1 A 1 T
## 2 B 2 F
## 3 D NA T
# Join data. Retain only rows in both sets.
inner_join(a, b, by = "x1")
## Warning in inner_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factors with different levels, coercing to character vector
## x1 x2 x3
## 1 A 1 T
## 2 B 2 F
# Join data. Retain all values, all rows.
full_join(a, b, by = "x1")
## Warning in full_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factors with different levels, coercing to character vector
## x1 x2 x3
## 1 A 1 T
## 2 B 2 F
## 3 C 3 <NA>
## 4 D NA T
# All rows in a that have a match in b.
semi_join(a, b, by = "x1")
## x1 x2
## 1 A 1
## 2 B 2
# All rows in a that do not have a match in b.
anti_join(a, b, by = "x1")
## x1 x2
## 1 C 3
For details visit: https://cran.r-project.org/web/packages/dplyr/dplyr.pdf https://cran.r-project.org/web/packages/tidyr/tidyr.pdf