MANTEL TESTS:
all are based on similarity or distance matrix. Jaccard similarity index for presence absence data. Morisita index for composition data. Euclidean distance for log-transformed acoustic/visual parameters and geographic distance
Visual temporal parameters VS LEK identity
## Monte-Carlo test
## Observation: 0.1255
## Call: mantel.rtest(m1 = distemplekmale, m2 = lekorgmat, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.04601
## [1] "number of males (n)= 19"
## [1] "males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 1 3 3 4 5 3
Visual temporal parameters VS SITE identity
## Monte-Carlo test
## Observation: 0.2327
## Call: mantel.rtest(m1 = dispsitelmale, m2 = siteorgmat, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.02563
## [1] "number of males (n)= 19"
## [1] "males per SITE"
## SITE
## HC1 LS TR2
## 3 13 3
Visual repertoire proportions VS LEK identity
## Monte-Carlo test
## Observation: 0.08346
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.0802
## [1] "number of males (n)= 21"
## [1] "males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 3 2 4 4 5 3
Visual repertoire proportions VS LEK identity for individuals with more than 5 display elements
## Monte-Carlo test
## Observation: 0.154
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.02837
## [1] "number of males (n)= 18"
## [1] "males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 1 2 4 4 4 3
Visual element presence/absense VS LEK identity
## Monte-Carlo test
## Observation: -0.008026
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.5134
## [1] "number of males (n)= 21"
## [1] "males per lek"
## SITE
## CCL HC1 LOC SJA SUR TR2
## 3 2 4 4 5 3
Visual repertoire proportions VS SITE identity
## Monte-Carlo test
## Observation: -0.1129
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.7143
## [1] "number of males (n)= 21"
## [1] "males per lek"
## SITE
## HC1 LS TR2
## 2 16 3
Visual element presence/absense VS SITE identity
## Monte-Carlo test
## Observation: -0.2516
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.9773
## [1] "number of males (n)= 21"
## [1] "males per lek"
## SITE
## HC1 LS TR2
## 2 16 3
Sequence similarity VS BIRD identity
## Monte-Carlo test
## Observation: 0.1072
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 1e-05
## [1] "number of sequences (n)= 160"
## [1] "sequences per male"
##
## CCL.146 CCL.185 CCL.187 HC1.Male4 HC1.Male7 LOC.108 LOC.117
## 2 5 2 15 12 2 4
## LOC.174 LOC.208 SJA.124 SJA.155 SJA.228 SJA.243 SUR.143
## 6 4 7 11 3 5 2
## SUR.152 SUR.176 SUR.177 SUR.179 TR2.Male1 TR2.Male2 TR2.Male9
## 5 34 4 26 3 4 4
## [1] "number of males"
## [1] 21
## [1] "sequences per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 9 27 16 26 71 11
Sequence similarity VS LEK identity
## Monte-Carlo test
## Observation: 0.05828
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.1817
## [1] "number of males (n)= 21"
## [1] "Males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 3 2 4 4 5 3
Sequence similarity VS SITE identity
## Monte-Carlo test
## Observation: -0.01591
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.5573
## [1] "number of males (n)= 21"
## [1] "Males per site"
## SITE
## HC1 LS TR2
## 2 16 3
Sequence similarity VS SONG TYPE identity
## Monte-Carlo test
## Observation: -0.05966
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.8277
## [1] "number of males (n)= 28"
## [1] "Males per song type"
##
## A HC1 A LOC A TR2 B HC1 B SJA B TR2 D SJA E CCL L SUR O SUR
## 1 4 1 2 3 3 1 4 7 2
Acoustic similarity VS SONG TYPE identity
## Monte-Carlo test
## Observation: 0.25
## Call: mantel.rtest(m1 = dispmean.acST, m2 = storgmatprop6, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 1e-05
## [1] "number of males (n)= 60"
## [1] "Males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 6 10 8 13 15 8
Acoustic similarity VS LEK identity
## num [1:60, 1:60] 0 0 0 0 0 0 1 1 1 1 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:60] "HC1 Male14 1" "HC1 Male15 2" "HC1 Male16 3" "HC1 Male17 4" ...
## ..$ : chr [1:60] "HC1 Male14 1" "HC1 Male15 2" "HC1 Male16 3" "HC1 Male17 4" ...
## Monte-Carlo test
## Observation: 0.1919
## Call: mantel.rtest(m1 = dispmean.acL, m2 = storgmatprop7, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 1e-05
## [1] "number of males (n)= 60"
## [1] "Males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 6 10 8 13 15 8
Acoustic similarity VS SITE identity
## Monte-Carlo test
## Observation: 0.05844
## Call: mantel.rtest(m1 = dispmean.acL, m2 = storgmatprop8, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.216
## [1] "number of males (n)= 60"
## [1] "Males per lek"
## SITE
## HC1 LS TR2
## 10 42 8
Acoustic similarity VS geographic distance
## Monte-Carlo test
## Observation: -0.05455
## Call: mantel.rtest(m1 = dispmeansong, m2 = dispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.7042
## [1] "number of males (n)= 54"
## [1] "Males per lek"
## LEK
## CCL HC1 LOC SJA SUR TR2
## 6 9 8 12 13 6
Acoustic similarity VS geographic distance REMOVING HC1
## Monte-Carlo test
## Observation: 0.2446
## Call: mantel.rtest(m1 = dispmeansong, m2 = dispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.01645
## [1] "number of males (n)= 45"
## [1] "Males per lek"
## LEK
## CCL LOC SJA SUR TR2
## 6 8 12 13 6
Acoustic similarity VS geographic distance for SUR ONLY
## Monte-Carlo test
## Observation: 0.2334
## Call: mantel.rtest(m1 = dispmeansong, m2 = dispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 9e-05
## [1] "number of males (n)= 39"
## [1] "Males per lek"
## LEK
## CCL LOC SJA SUR
## 6 8 12 13
Visual element proportions VS geographic distance

## Monte-Carlo test
## Observation: -0.1551
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.8021
Visual element proportions VS geographic distance REMOVING HC1

## Monte-Carlo test
## Observation: -0.2065
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.8087
Visual element proportions VS geographic distance for SUR ONLY

## Monte-Carlo test
## Observation: 0.9876
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.04197
Acoustic similarity VS geographic distance by LEK
## [1] "TR2"
## [1] "number of males (n)= 6"
## Monte-Carlo test
## Observation: 0.1211
## Call: mantel.rtest(m1 = surdispmeansong, m2 = surdispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.2733
## [1] "SUR"
## [1] "number of males (n)= 13"
## Monte-Carlo test
## Observation: 0.05414
## Call: mantel.rtest(m1 = surdispmeansong, m2 = surdispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.3131
## [1] "CCL"
## [1] "number of males (n)= 6"
## Monte-Carlo test
## Observation: -0.3971
## Call: mantel.rtest(m1 = surdispmeansong, m2 = surdispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.867
## [1] "HC1"
## [1] "number of males (n)= 9"
## Monte-Carlo test
## Observation: 0.6246
## Call: mantel.rtest(m1 = surdispmeansong, m2 = surdispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.01164
## [1] "LOC"
## [1] "number of males (n)= 8"
## Monte-Carlo test
## Observation: 0.0798
## Call: mantel.rtest(m1 = surdispmeansong, m2 = surdispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.33
## [1] "SJA"
## [1] "number of males (n)= 12"
## Monte-Carlo test
## Observation: 0.5125
## Call: mantel.rtest(m1 = surdispmeansong, m2 = surdispmeancoor, nrepet = nrepet)
## Based on 100000 replicates
## Simulated p-value: 0.00161