output: html_notebook author: Adhislacy —
This is an R Markdown Notebook.
UN11 DATA.
library(alr4)
## Warning: package 'alr4' was built under R version 3.3.3
## Loading required package: car
## Warning: package 'car' was built under R version 3.3.3
## Loading required package: effects
## Warning: package 'effects' was built under R version 3.3.3
##
## Attaching package: 'effects'
## The following object is masked from 'package:car':
##
## Prestige
library(car)
- To find out more about the data.
?alr4
## starting httpd help server ...
## done
attach(UN11)
View(UN11)
?UN11
str(UN11)
## 'data.frame': 199 obs. of 6 variables:
## $ region : Factor w/ 8 levels "Africa","Asia",..: 2 4 1 1 3 5 2 3 8 4 ...
## $ group : Factor w/ 3 levels "oecd","other",..: 2 2 3 3 2 2 2 2 1 1 ...
## $ fertility: num 5.97 1.52 2.14 5.13 2 ...
## $ ppgdp : num 499 3677 4473 4322 13750 ...
## $ lifeExpF : num 49.5 80.4 75 53.2 81.1 ...
## $ pctUrban : num 23 53 67 59 100 93 64 47 89 68 ...
## - attr(*, "na.action")=Class 'omit' Named int [1:34] 4 5 8 28 41 67 68 72 79 83 ...
## .. ..- attr(*, "names")= chr [1:34] "Am Samoa" "Andorra" "Antigua and Barbuda" "Br Virigin Is" ...
contrasts(UN11$group)
## other africa
## oecd 0 0
## other 1 0
## africa 0 1
boxplot(UN11$lifeExpF~UN11$group, main="BOX PLOT OF LIFE EXPECTANCY FOR EACH GROUP", xlab="Group", ylab="Life Expectancy")
un11_lm2 <- lm(lifeExpF~log(ppgdp)+factor(group) + log(ppgdp)*factor(group), data = UN11)
summary(un11_lm2)
##
## Call:
## lm(formula = lifeExpF ~ log(ppgdp) + factor(group) + log(ppgdp) *
## factor(group), data = UN11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.634 -2.089 0.301 2.255 14.489
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.2137 15.2203 3.890 0.000138 ***
## log(ppgdp) 2.2425 1.4664 1.529 0.127844
## factor(group)other -11.1731 15.5948 -0.716 0.474572
## factor(group)africa -22.9848 15.7838 -1.456 0.146954
## log(ppgdp):factor(group)other 0.9294 1.5177 0.612 0.540986
## log(ppgdp):factor(group)africa 1.0950 1.5785 0.694 0.488703
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.129 on 193 degrees of freedom
## Multiple R-squared: 0.7498, Adjusted R-squared: 0.7433
## F-statistic: 115.7 on 5 and 193 DF, p-value: < 2.2e-16
lm(formula = lifeExpF ~ log(ppgdp) + factor(group) + log(ppgdp) *
factor(group), data = UN11)
##
## Call:
## lm(formula = lifeExpF ~ log(ppgdp) + factor(group) + log(ppgdp) *
## factor(group), data = UN11)
##
## Coefficients:
## (Intercept) log(ppgdp)
## 59.2137 2.2425
## factor(group)other factor(group)africa
## -11.1731 -22.9848
## log(ppgdp):factor(group)other log(ppgdp):factor(group)africa
## 0.9294 1.0950
un11_lm3 <- lm(lifeExpF~log(ppgdp)+factor(group), data = UN11)
summary(un11_lm3)
##
## Call:
## lm(formula = lifeExpF ~ log(ppgdp) + factor(group), data = UN11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.6348 -2.1741 0.2441 2.3537 14.6539
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.529 3.400 14.569 < 2e-16 ***
## log(ppgdp) 3.177 0.316 10.056 < 2e-16 ***
## factor(group)other -1.535 1.174 -1.308 0.193
## factor(group)africa -12.170 1.557 -7.814 3.35e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.109 on 195 degrees of freedom
## Multiple R-squared: 0.7492, Adjusted R-squared: 0.7453
## F-statistic: 194.1 on 3 and 195 DF, p-value: < 2.2e-16
anova(un11_lm2, un11_lm3)
## Analysis of Variance Table
##
## Model 1: lifeExpF ~ log(ppgdp) + factor(group) + log(ppgdp) * factor(group)
## Model 2: lifeExpF ~ log(ppgdp) + factor(group)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 193 5077.7
## 2 195 5090.4 -2 -12.675 0.2409 0.7862
- Diagnostics plots. Diagnostic plots are automatically produced by applying the plot() function directly to the output from lm(). In general, this command will produce one plot at a time, & hitting ‘Enter’ button will generate the next plot, if you’re using the console. But if using the R-Notebook, all the plots can be viewed siimultaneously and you can use the left and right arrow buttons to view them, which is much more convenient (well, for me).
par(mfrow=c(2,2))
plot(un11_lm3, which=1:6)
plot(un11_lm2, which = 1:6)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3
ggplot(data=UN11, aes(x=log(ppgdp), y=lifeExpF, colour=factor(group))) + stat_smooth(method=lm, fullrange=FALSE) + geom_point()
Keep in mind that in this dataset, interaction is significant.
fit = lm(UN11$lifeExpF ~ log(UN11$ppgdp) + factor(UN11$group))
fit
##
## Call:
## lm(formula = UN11$lifeExpF ~ log(UN11$ppgdp) + factor(UN11$group))
##
## Coefficients:
## (Intercept) log(UN11$ppgdp)
## 49.529 3.177
## factor(UN11$group)other factor(UN11$group)africa
## -1.535 -12.170
END