x<-seq(0, 10, 1)
pdf_binom<-dbinom(x, 10, 0.3)
tabla<-data.frame(x, pdf_binom)
names(tabla)<-c("Variable Aleatoria", "Probabilidad")
tabla
## Variable Aleatoria Probabilidad
## 1 0 0.0282475249
## 2 1 0.1210608210
## 3 2 0.2334744405
## 4 3 0.2668279320
## 5 4 0.2001209490
## 6 5 0.1029193452
## 7 6 0.0367569090
## 8 7 0.0090016920
## 9 8 0.0014467005
## 10 9 0.0001377810
## 11 10 0.0000059049
barplot(pdf_binom, main="Binomial",
xlab="Variable Aleatoria",
ylab="Densidad",
col="Red",
ylim=c(0,0.3))
## CDF
cdf_binom<-pbinom(x, 10, 0.3)
cdf_tabla<-data.frame(x, cdf_binom)
names(cdf_tabla)<-c("Variable Aleatoria", "Acumulado")
cdf_tabla
## Variable Aleatoria Acumulado
## 1 0 0.02824752
## 2 1 0.14930835
## 3 2 0.38278279
## 4 3 0.64961072
## 5 4 0.84973167
## 6 5 0.95265101
## 7 6 0.98940792
## 8 7 0.99840961
## 9 8 0.99985631
## 10 9 0.99999410
## 11 10 1.00000000
plot(x, cdf_binom, main="Acumulada",
xlab="Variable Aleatoria",
ylab="Probabilidad",
type="b",
lwd="3",
col="blue")
# Distribución Nomral
y<-seq(10,90,0.1)
normal<-dnorm(y, mean(y), 9)
plot(y, normal, main="Distribucion Nomral",
xlab="Variable Aleatoria",
ylab="Densidad",
lwd=4,
type="l")
## Función para Calculo de Probabilidad
#Calculo de Área
cdf_normal<-function(Z1, Z2){
A1<-pnorm(Z1, mean(y), 9)
A2<-pnorm(Z2, mean(y), 9)
A2-A1
}
cdf_normal(40,60)
## [1] 0.7334795