Определение порядков малости

Определить порядок малости и константу С погрешности правой формулы численного дифференцирования

library(stats)
library(ggplot2)
V = 4
#h = 0.0000001
x0 = 2;
log10 <- function(x) log(x,10)
f <- function(x) sin(V * x) + (x*x + V*x)^(1/2)
df <- function(x) V * cos(V*x) + (1/2) * (2*x + V) * ((x*x + V*x) ^ (-1/2))
f1 <- function(x) sin(V*x)
df1 <- function(x) V*cos(V*x)
phi <- function(h) abs(df(x0) - (f(x0 + h) - f(x0))/h)
x <- seq(0.0001,0.005, by = 0.0001)
right_graph <- data.frame(x = x, y = phi(x))

slope = (log10(tail(right_graph)[1,]$y) - log10(right_graph[1,]$y))/(log10(tail(right_graph)[1,]$x) - log10(right_graph[1,]$x))
slope
[1] 0.9997652
shiftY = log10(tail(right_graph)[1,]$y) - slope * log10(tail(right_graph)[1,]$x)
shiftY
[1] 0.900128
        

Порядок малости \(\alpha \approx 1\). Константа С равна \(10^{0.9}=7.94\)

Определить порядок малости и константу С центральной формулы численного дифференцирования

phi_central <- function(h) abs(df(x0) - (f(x0 + h) - f(x0-h))/(2*h))
central_graph <- data.frame(x = x, y = phi_central(x))
ggplot(data=central_graph, aes(x=x,y=y)) + geom_line() + coord_trans(x ='log10', y ='log10') + ggtitle('lg-lg график погрешности центральной формулы дифференцирования')

slope2 = (log10(tail(central_graph)[1,]$y) - log10(central_graph[1,]$y))/(log10(tail(central_graph)[1,]$x) - log10(central_graph[1,]$x))
slope2
[1] 1.999981
shiftY2 = log10(tail(central_graph)[1,]$y) - slope2 * log10(tail(central_graph)[1,]$x)
shiftY2
[1] 0.1953047

Порядок малости \(\alpha \approx 2\). Константа С равна \(10^{0.19}=1.548\)

Определить порядок малости и константу С погрешности формулы численного интегрирования методом центральных прямоугольников и методом трапеций

Метод центральных прямоугольников

Для простоты возьмем функцию \(e^x\)

rectangleIntergation <- function(h) {
  x <- seq(V, 2*V, length.out = h)
  ds <- data.frame(x1=x[seq(1, h -1 )], x2=x[seq(2, h )])
  a = apply(ds, 1, function(d) exp((d[1] + d[2])/2)*(d[2]-d[1]))
  sum(a)
}
# функция погрешности интегрирования методом центральных прямоугольников
phi3 <- function(h) abs(2926.36 - rectangleIntergation(h))
g3 <- data.frame(x = seq(100, 1101, by=1), y = apply(data.frame(seq(100, 1101, by=1)), 1, phi3))

[1] -0.2906941
[1] -1.863475

Порядок малости \(\alpha \approx 0.3\). Константа С равна \(10^{-1.8}=0.16\)

\[\alpha \approx 0.3\] \[C \approx 10^{-1.8}=0.16\]

Метод трапеций

trapezoidIntergation <- function(h) {
  x <- seq(V, 2*V, length.out = h)
  ds <- data.frame(x1=x[seq(1, h -1 )], x2=x[seq(2, h )])
  a = apply(ds, 1, function(d) (d[2]-d[1]) * (exp(d[1]) + exp(d[2])) / 2)
  sum(a)
}
# функция погрешности интегрирования методом трапеций 
phi4 <- function(h) abs(2926.36 - trapezoidIntergation(h))
g4 <- data.frame(x = seq(100, 1101, by=1), y = apply(data.frame(seq(100, 1101, by=1)), 1, phi4))

[1] -0.2996792
[1] -1.59891

\[\alpha \approx 0.3\] \[C \approx 10^{-1.6}=0.025\]

LS0tCnRpdGxlOiAi0JvQsNCx0L7RgNCw0YLQvtGA0L3QsNGPIOKEljciCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMjINCe0L/RgNC10LTQtdC70LXQvdC40LUg0L/QvtGA0Y/QtNC60L7QsiDQvNCw0LvQvtGB0YLQuAoKIyMjINCe0L/RgNC10LTQtdC70LjRgtGMINC/0L7RgNGP0LTQvtC6INC80LDQu9C+0YHRgtC4INC4INC60L7QvdGB0YLQsNC90YLRgyDQoSDQv9C+0LPRgNC10YjQvdC+0YHRgtC4INC/0YDQsNCy0L7QuSAg0YTQvtGA0LzRg9C70Ysg0YfQuNGB0LvQtdC90L3QvtCz0L4g0LTQuNGE0YTQtdGA0LXQvdGG0LjRgNC+0LLQsNC90LjRjwoKYGBge3J9CgpsaWJyYXJ5KHN0YXRzKQpsaWJyYXJ5KGdncGxvdDIpCgpWID0gNAojaCA9IDAuMDAwMDAwMQp4MCA9IDI7Cgpsb2cxMCA8LSBmdW5jdGlvbih4KSBsb2coeCwxMCkKCmYgPC0gZnVuY3Rpb24oeCkgc2luKFYgKiB4KSArICh4KnggKyBWKngpXigxLzIpCmRmIDwtIGZ1bmN0aW9uKHgpIFYgKiBjb3MoVip4KSArICgxLzIpICogKDIqeCArIFYpICogKCh4KnggKyBWKngpIF4gKC0xLzIpKQoKZjEgPC0gZnVuY3Rpb24oeCkgc2luKFYqeCkKZGYxIDwtIGZ1bmN0aW9uKHgpIFYqY29zKFYqeCkKCnBoaSA8LSBmdW5jdGlvbihoKSBhYnMoZGYoeDApIC0gKGYoeDAgKyBoKSAtIGYoeDApKS9oKQoKeCA8LSBzZXEoMC4wMDAxLDAuMDA1LCBieSA9IDAuMDAwMSkKcmlnaHRfZ3JhcGggPC0gZGF0YS5mcmFtZSh4ID0geCwgeSA9IHBoaSh4KSkKCmBgYAoKCmBgYHtyIGVjaG89RkFMU0V9CmdncGxvdChkYXRhPXJpZ2h0X2dyYXBoLCBhZXMoeD14LHk9eSkpICsgZ2VvbV9saW5lKCkgKyBjb29yZF90cmFucyh4ID0nbG9nMTAnLCB5ID0nbG9nMTAnKSArIGdndGl0bGUoJ2xnLWxnINCz0YDQsNGE0LjQuiDQv9C+0LPRgNC10YjQvdC+0YHRgtC4INC/0YDQsNCy0L7QuSDRhNC+0YDQvNGD0LvRiyDQtNC40YTRhNC10YDQtdC90YbQuNGA0L7QstCw0L3QuNGPJykKI2dncGxvdChkYXRhPXJpZ2h0X2dyYXBoLCBhZXMoeD1sb2cxMCh4KSwgeT1sb2cxMCh5KSkpICsgZ2VvbV9saW5lKCkKI2dncGxvdChkYXRhPXJpZ2h0X2dyYXBoLCBhZXMoeD14LHk9eSkpICsgZ2VvbV9saW5lKCkgKyBzY2FsZV94X2xvZzEwKCkgKyBzY2FsZV95X2xvZzEwKCkKYGBgCmBgYHtyfQpzbG9wZSA9IChsb2cxMCh0YWlsKHJpZ2h0X2dyYXBoKVsxLF0keSkgLSBsb2cxMChyaWdodF9ncmFwaFsxLF0keSkpLyhsb2cxMCh0YWlsKHJpZ2h0X2dyYXBoKVsxLF0keCkgLSBsb2cxMChyaWdodF9ncmFwaFsxLF0keCkpCnNsb3BlCnNoaWZ0WSA9IGxvZzEwKHRhaWwocmlnaHRfZ3JhcGgpWzEsXSR5KSAtIHNsb3BlICogbG9nMTAodGFpbChyaWdodF9ncmFwaClbMSxdJHgpCnNoaWZ0WQogICAgICAgIApgYGAKCtCf0L7RgNGP0LTQvtC6INC80LDQu9C+0YHRgtC4ICRcYWxwaGEgXGFwcHJveCAxJC4g0JrQvtC90YHRgtCw0L3RgtCwINChINGA0LDQstC90LAgJDEwXnswLjl9PTcuOTQkCgojIyMg0J7Qv9GA0LXQtNC10LvQuNGC0Ywg0L/QvtGA0Y/QtNC+0Log0LzQsNC70L7RgdGC0Lgg0Lgg0LrQvtC90YHRgtCw0L3RgtGDINChINGG0LXQvdGC0YDQsNC70YzQvdC+0LkgINGE0L7RgNC80YPQu9GLINGH0LjRgdC70LXQvdC90L7Qs9C+INC00LjRhNGE0LXRgNC10L3RhtC40YDQvtCy0LDQvdC40Y8KCmBgYHtyfQpwaGlfY2VudHJhbCA8LSBmdW5jdGlvbihoKSBhYnMoZGYoeDApIC0gKGYoeDAgKyBoKSAtIGYoeDAtaCkpLygyKmgpKQpjZW50cmFsX2dyYXBoIDwtIGRhdGEuZnJhbWUoeCA9IHgsIHkgPSBwaGlfY2VudHJhbCh4KSkKCmBgYAoKYGBge3J9CgpnZ3Bsb3QoZGF0YT1jZW50cmFsX2dyYXBoLCBhZXMoeD14LHk9eSkpICsgZ2VvbV9saW5lKCkgKyBjb29yZF90cmFucyh4ID0nbG9nMTAnLCB5ID0nbG9nMTAnKSArIGdndGl0bGUoJ2xnLWxnINCz0YDQsNGE0LjQuiDQv9C+0LPRgNC10YjQvdC+0YHRgtC4INGG0LXQvdGC0YDQsNC70YzQvdC+0Lkg0YTQvtGA0LzRg9C70Ysg0LTQuNGE0YTQtdGA0LXQvdGG0LjRgNC+0LLQsNC90LjRjycpCgpzbG9wZTIgPSAobG9nMTAodGFpbChjZW50cmFsX2dyYXBoKVsxLF0keSkgLSBsb2cxMChjZW50cmFsX2dyYXBoWzEsXSR5KSkvKGxvZzEwKHRhaWwoY2VudHJhbF9ncmFwaClbMSxdJHgpIC0gbG9nMTAoY2VudHJhbF9ncmFwaFsxLF0keCkpCnNsb3BlMgpzaGlmdFkyID0gbG9nMTAodGFpbChjZW50cmFsX2dyYXBoKVsxLF0keSkgLSBzbG9wZTIgKiBsb2cxMCh0YWlsKGNlbnRyYWxfZ3JhcGgpWzEsXSR4KQpzaGlmdFkyCmBgYArQn9C+0YDRj9C00L7QuiDQvNCw0LvQvtGB0YLQuCAkXGFscGhhIFxhcHByb3ggMiQuINCa0L7QvdGB0YLQsNC90YLQsCDQoSDRgNCw0LLQvdCwICQxMF57MC4xOX09MS41NDgkCgoKIyMjINCe0L/RgNC10LTQtdC70LjRgtGMINC/0L7RgNGP0LTQvtC6INC80LDQu9C+0YHRgtC4INC4INC60L7QvdGB0YLQsNC90YLRgyDQoSDQv9C+0LPRgNC10YjQvdC+0YHRgtC4INGE0L7RgNC80YPQu9GLINGH0LjRgdC70LXQvdC90L7Qs9C+INC40L3RgtC10LPRgNC40YDQvtCy0LDQvdC40Y8g0LzQtdGC0L7QtNC+0Lwg0YbQtdC90YLRgNCw0LvRjNC90YvRhSDQv9GA0Y/QvNC+0YPQs9C+0LvRjNC90LjQutC+0LIg0Lgg0LzQtdGC0L7QtNC+0Lwg0YLRgNCw0L/QtdGG0LjQuQoKIyMjIyDQnNC10YLQvtC0INGG0LXQvdGC0YDQsNC70YzQvdGL0YUg0L/RgNGP0LzQvtGD0LPQvtC70YzQvdC40LrQvtCyCgrQlNC70Y8g0L/RgNC+0YHRgtC+0YLRiyDQstC+0LfRjNC80LXQvCDRhNGD0L3QutGG0LjRjiAkZV54JAoKYGBge3J9CnJlY3RhbmdsZUludGVyZ2F0aW9uIDwtIGZ1bmN0aW9uKGgpIHsKICB4IDwtIHNlcShWLCAyKlYsIGxlbmd0aC5vdXQgPSBoKQogIGRzIDwtIGRhdGEuZnJhbWUoeDE9eFtzZXEoMSwgaCAtMSApXSwgeDI9eFtzZXEoMiwgaCApXSkKICBhID0gYXBwbHkoZHMsIDEsIGZ1bmN0aW9uKGQpIGV4cCgoZFsxXSArIGRbMl0pLzIpKihkWzJdLWRbMV0pKQogIHN1bShhKQp9CgojINGE0YPQvdC60YbQuNGPINC/0L7Qs9GA0LXRiNC90L7RgdGC0Lgg0LjQvdGC0LXQs9GA0LjRgNC+0LLQsNC90LjRjyDQvNC10YLQvtC00L7QvCDRhtC10L3RgtGA0LDQu9GM0L3Ri9GFINC/0YDRj9C80L7Rg9Cz0L7Qu9GM0L3QuNC60L7QsgpwaGkzIDwtIGZ1bmN0aW9uKGgpIGFicygyOTI2LjM2IC0gcmVjdGFuZ2xlSW50ZXJnYXRpb24oaCkpCgpnMyA8LSBkYXRhLmZyYW1lKHggPSBzZXEoMTAwLCAxMTAxLCBieT0xKSwgeSA9IGFwcGx5KGRhdGEuZnJhbWUoc2VxKDEwMCwgMTEwMSwgYnk9MSkpLCAxLCBwaGkzKSkKCmBgYAoKYGBge3IgZWNobz1GQUxTRX0KZ2dwbG90KGRhdGE9ZzMsIGFlcyh4PXgseT15KSkgKyBnZW9tX2xpbmUoKSArIGNvb3JkX3RyYW5zKHggPSdsb2cxMCcsIHkgPSdsb2cxMCcpICsgZ2d0aXRsZSgnbGctbGcg0LPRgNCw0YTQuNC6INC/0L7Qs9GA0LXRiNC90L7RgdGC0Lgg0LzQtdGC0L7QtNC+0Lwg0YbQtdC90YLRgNCw0LvRjNC90YvRhSDQv9GA0Y/QvNC+0YPQs9C+0LvRjNC90LjQutC+0LInKQpzbG9wZTMgPSAobG9nMTAodGFpbChnMylbMSxdJHkpIC0gbG9nMTAoZzNbMSxdJHkpKS8obG9nMTAodGFpbChnMylbMSxdJHgpIC0gbG9nMTAoY2VudHJhbF9ncmFwaFsxLF0keCkpCnNsb3BlMwpzaGlmdFkzID0gbG9nMTAodGFpbChnMylbMSxdJHkpIC0gc2xvcGUzICogbG9nMTAodGFpbChnMylbMSxdJHgpCnNoaWZ0WTMKCmBgYArQn9C+0YDRj9C00L7QuiDQvNCw0LvQvtGB0YLQuCAkXGFscGhhIFxhcHByb3ggMC4zJC4g0JrQvtC90YHRgtCw0L3RgtCwINChINGA0LDQstC90LAgJDEwXnstMS44fT0wLjE2JAoKJCRcYWxwaGEgXGFwcHJveCAwLjMkJAokJEMgXGFwcHJveCAxMF57LTEuOH09MC4xNiQkCgojIyMjINCc0LXRgtC+0LQg0YLRgNCw0L/QtdGG0LjQuQoKCmBgYHtyfQp0cmFwZXpvaWRJbnRlcmdhdGlvbiA8LSBmdW5jdGlvbihoKSB7CiAgeCA8LSBzZXEoViwgMipWLCBsZW5ndGgub3V0ID0gaCkKICBkcyA8LSBkYXRhLmZyYW1lKHgxPXhbc2VxKDEsIGggLTEgKV0sIHgyPXhbc2VxKDIsIGggKV0pCiAgYSA9IGFwcGx5KGRzLCAxLCBmdW5jdGlvbihkKSAoZFsyXS1kWzFdKSAqIChleHAoZFsxXSkgKyBleHAoZFsyXSkpIC8gMikKICBzdW0oYSkKfQoKIyDRhNGD0L3QutGG0LjRjyDQv9C+0LPRgNC10YjQvdC+0YHRgtC4INC40L3RgtC10LPRgNC40YDQvtCy0LDQvdC40Y8g0LzQtdGC0L7QtNC+0Lwg0YLRgNCw0L/QtdGG0LjQuSAKcGhpNCA8LSBmdW5jdGlvbihoKSBhYnMoMjkyNi4zNiAtIHRyYXBlem9pZEludGVyZ2F0aW9uKGgpKQoKZzQgPC0gZGF0YS5mcmFtZSh4ID0gc2VxKDEwMCwgMTEwMSwgYnk9MSksIHkgPSBhcHBseShkYXRhLmZyYW1lKHNlcSgxMDAsIDExMDEsIGJ5PTEpKSwgMSwgcGhpNCkpCgoKCmBgYAoKYGBge3IgZWNobz1GQUxTRX0KZ2dwbG90KGRhdGE9ZzQsIGFlcyh4PXgseT15KSkgKyBnZW9tX2xpbmUoKSArIGNvb3JkX3RyYW5zKHggPSdsb2cxMCcsIHkgPSdsb2cxMCcpICsgZ2d0aXRsZSgnbGctbGcg0LPRgNCw0YTQuNC6INC/0L7Qs9GA0LXRiNC90L7RgdGC0Lgg0LzQtdGC0L7QtNC+0Lwg0YLRgNCw0L/QtdGG0LjQuScpCnNsb3BlNCA9IChsb2cxMCh0YWlsKGc0KVsxLF0keSkgLSBsb2cxMChnNFsxLF0keSkpLyhsb2cxMCh0YWlsKGc0KVsxLF0keCkgLSBsb2cxMChjZW50cmFsX2dyYXBoWzEsXSR4KSkKc2xvcGU0CnNoaWZ0WTQgPSBsb2cxMCh0YWlsKGc0KVsxLF0keSkgLSBzbG9wZTQgKiBsb2cxMCh0YWlsKGc0KVsxLF0keCkKc2hpZnRZNAoKYGBgCgokJFxhbHBoYSBcYXBwcm94IDAuMyQkCiQkQyBcYXBwcm94IDEwXnstMS42fT0wLjAyNSQkCg==