data(mtcars)
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
mean(mtcars$mpg)
## [1] 20.09062
sd(mtcars$mpg)
## [1] 6.026948
ls()
## [1] "mtcars"
rm(x)
## Warning in rm(x): object 'x' not found
rm(list=ls())
classex=c(0,3,5,9,8,7,0,9,5,2,4,10,14,7,15,4,7,17,6,13)
sort(classex)[length(classex)/2]
## [1] 7
gender=c(0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0)

classd=NULL
classd$classex=classex
classd$gender=gender
classd=as.data.frame(classd)

classd
##    classex gender
## 1        0      0
## 2        3      1
## 3        5      0
## 4        9      1
## 5        8      0
## 6        7      0
## 7        0      0
## 8        9      1
## 9        5      0
## 10       2      0
## 11       4      0
## 12      10      0
## 13      14      0
## 14       7      0
## 15      15      0
## 16       4      0
## 17       7      0
## 18      17      0
## 19       6      1
## 20      13      0
attach(classd)
## The following objects are masked _by_ .GlobalEnv:
## 
##     classex, gender
classd[gender==1,]
##    classex gender
## 2        3      1
## 4        9      1
## 8        9      1
## 19       6      1
summary(classd[gender==1,])
##     classex         gender 
##  Min.   :3.00   Min.   :1  
##  1st Qu.:5.25   1st Qu.:1  
##  Median :7.50   Median :1  
##  Mean   :6.75   Mean   :1  
##  3rd Qu.:9.00   3rd Qu.:1  
##  Max.   :9.00   Max.   :1
summary(classd[gender==0,])
##     classex           gender 
##  Min.   : 0.000   Min.   :0  
##  1st Qu.: 4.000   1st Qu.:0  
##  Median : 7.000   Median :0  
##  Mean   : 7.375   Mean   :0  
##  3rd Qu.:10.750   3rd Qu.:0  
##  Max.   :17.000   Max.   :0
length(gender)
## [1] 20
length(classex)
## [1] 20
mean(classex)
## [1] 7.25
range(classex)
## [1]  0 17
median(classex)
## [1] 7
table(classex)
## classex
##  0  2  3  4  5  6  7  8  9 10 13 14 15 17 
##  2  1  1  2  2  1  3  1  2  1  1  1  1  1
#mode(classex)=7

Mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}

Mode(classex)
## [1] 7
plot(density(classex))

hist(classex)

summary(classex)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    4.00    7.00    7.25    9.25   17.00
quantile(classex,c(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1))
##   0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100% 
##  0.0  1.8  3.8  4.7  5.6  7.0  7.4  9.0 10.6 14.1 17.0
quantile(classex,c(0,.25,.5,.75,1))
##    0%   25%   50%   75%  100% 
##  0.00  4.00  7.00  9.25 17.00
#install.packages("moments")
library(moments)

kurtosis(classex)
## [1] 2.443901
kurtosis(classex)
## [1] 2.443901
getwd()
## [1] "C:/Users/Dell/Documents"
setwd("C:/Users/Dell/Desktop")
dir()
##  [1] "~$thonajay.docx"                                       
##  [2] "µTorrent.lnk"                                          
##  [3] "association.html"                                      
##  [4] "association.R"                                         
##  [5] "BigDiamonds.csv"                                       
##  [6] "boston schema.xlsx"                                    
##  [7] "boston.csv"                                            
##  [8] "Class-3-Public-Primary-Certification-Authority.pem.txt"
##  [9] "dap class 4.R"                                         
## [10] "dap_class_4.html"                                      
## [11] "Data Analysis (1)"                                     
## [12] "DataWrangling.pdf"                                     
## [13] "desktop.ini"                                           
## [14] "Diamond (7).csv"                                       
## [15] "Diamond (8).csv"                                       
## [16] "dump"                                                  
## [17] "dvd.csv"                                               
## [18] "GoToWebinar.lnk"                                       
## [19] "kushal.jpg"                                            
## [20] "NTO01022363_07_May_2017_09_52_28_AM.pdf"               
## [21] "Pythonajay.docx"                                       
## [22] "remedial class ims.R"                                  
## [23] "remedial_class_ims.html"                               
## [24] "rsconnect"                                             
## [25] "stats class 2.R"                                       
## [26] "stats_class_2.html"                                    
## [27] "sts_gold_tweet.csv"                                    
## [28] "SUINV.png"                                             
## [29] "titanic2.csv"                                          
## [30] "Wipro_Third_Party_DB_New_Format.xlsx"                  
## [31] "womensmarchtweets.csv"
dir(pattern = "csv")
## [1] "BigDiamonds.csv"       "boston.csv"            "Diamond (7).csv"      
## [4] "Diamond (8).csv"       "dvd.csv"               "sts_gold_tweet.csv"   
## [7] "titanic2.csv"          "womensmarchtweets.csv"
#install.packages("sqldf")
library(sqldf)
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
data(mtcars)
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
sqldf("select avg(mpg),gear from mtcars group by gear ")
## Loading required package: tcltk
## Warning: Quoted identifiers should have class SQL, use DBI::SQL() if the
## caller performs the quoting.
##   avg(mpg) gear
## 1 16.10667    3
## 2 24.53333    4
## 3 21.38000    5
sqldf("select *
       from mtcars
      where mpg > (
      select avg(mpg)
      from mtcars
      )"
)
##     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## 5  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## 6  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## 7  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 8  30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 9  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 10 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## 11 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 12 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 13 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 14 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#sqldf("select * from mtcars where mpg>avg(mpg)")