|IS 643 CURRENT TOPICS IN DATA ANALYTICS - PROJECT | Data Analytics
In the project, we are doing to deal with recommender system. A system that recommends products or services to user based on their past experience. We will focus more on Collaborative Filtering and Content-Based Recommender System. Although, we have a Knowledged-Based Recommender System, Hybrid System that combine the two together, but our focus on this project would be based on the former.
You may want to ask, what is COllaborative Filtering?. A Collaborative Filtering is a method of making automatic predictions or filtering about the interests of a user by collecting preferences or taste information from many users.Similarity of items is determined by the similarity of the ratings of those items by the users who have rated both items.
Colaborative filtering make use of algorithms that require the following: * Users’ active participation * User interest representation * Matching people with similar interest together using algorithm.
Content-Based: This systems focus on properties of items. Similarity of items is determined by measuring the similarity in their properties.
Methodology:
We will be making use of both Spark and Base R environment.
Kindly install the packages below before loading it(If you dont already have them installed).
options(warn = -1)
suppressMessages(library(knitr))
suppressMessages(library(sparklyr))
suppressMessages(library(SparkR))
suppressMessages(library(dplyr))
suppressMessages(library(randomForest))
suppressMessages(library(magrittr))
suppressMessages(library(reshape2))
suppressMessages(library(recommenderlab))
suppressMessages(library(tidyr))
suppressWarnings(library(ggplot2))##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
suppressMessages(library(e1071))Euclidean Distance:
This is distance between two points in the plane with coordinates(x,y) and (a,b) which can also be mathematically represented as
\(Euclidean\quad Distaince(x,y)\quad =\quad \sqrt { \sum _{ i=1 }^{ n }{ { |{ x }_{ i } }-\quad { y }_{ i }|^{ 2 } } }\)
Correlation:
This a statistical technique that is used to show and determine how strongly pairs of variables are related.
\({ \rho }_{ x,y }\quad =\frac { cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } }\)
Distance:
This is majorly used in a binary datasets to determine the distance between two items.
\(distance(ItemA,ItemB)\quad =\quad \frac { ItemA\cap ItemB }{ ItemA\cup ItemB }\)
We are going to connect spark using our local machine.
# LOCAL CONNECTION:
sc <- spark_connect(master = "local", version = "2.1.0")Checking if Spark is connected or not
spark_connection_is_open(sc)## [1] TRUE
Read the dataset from the local machine and renaming the columns as appropriate.
ratings_df <- read.csv("C:/Users/mayowa/Downloads/ml-latest-small/ml-latest-small/ratings.csv", head=T)
movies_df <- read.csv("C:/Users/mayowa/Downloads/ml-latest-small/ml-latest-small/movies.csv", head=T)
colnames(ratings_df)[1:3] <- c("user","item","rating")
colnames(movies_df)[1:3] <- c("user","title","genres")head(ratings_df)## user item rating timestamp
## 1 1 31 2.5 1260759144
## 2 1 1029 3.0 1260759179
## 3 1 1061 3.0 1260759182
## 4 1 1129 2.0 1260759185
## 5 1 1172 4.0 1260759205
## 6 1 1263 2.0 1260759151
How would their combination look like? lets combine the two datasets into one using “user” as a link.
combined_dataset <- merge(ratings_df, movies_df,by="user",na.rm=TRUE)
kable(head(combined_dataset))| user | item | rating | timestamp | title | genres |
|---|---|---|---|---|---|
| 1 | 3671 | 3.0 | 1260759117 | Toy Story (1995) | Adventure|Animation|Children|Comedy|Fantasy |
| 1 | 2968 | 1.0 | 1260759200 | Toy Story (1995) | Adventure|Animation|Children|Comedy|Fantasy |
| 1 | 1061 | 3.0 | 1260759182 | Toy Story (1995) | Adventure|Animation|Children|Comedy|Fantasy |
| 1 | 2105 | 4.0 | 1260759139 | Toy Story (1995) | Adventure|Animation|Children|Comedy|Fantasy |
| 1 | 1293 | 2.0 | 1260759148 | Toy Story (1995) | Adventure|Animation|Children|Comedy|Fantasy |
| 1 | 2455 | 2.5 | 1260759113 | Toy Story (1995) | Adventure|Animation|Children|Comedy|Fantasy |
uirt <- combined_dataset[, c(1, 2,3,5)]
kable(head(uirt))| user | item | rating | title |
|---|---|---|---|
| 1 | 3671 | 3.0 | Toy Story (1995) |
| 1 | 2968 | 1.0 | Toy Story (1995) |
| 1 | 1061 | 3.0 | Toy Story (1995) |
| 1 | 2105 | 4.0 | Toy Story (1995) |
| 1 | 1293 | 2.0 | Toy Story (1995) |
| 1 | 2455 | 2.5 | Toy Story (1995) |
Here, we can see clearly that correlation may not be suitable to
cor(uirt$item, y =uirt$user , use = "everything",method = c("pearson", "kendall", "spearman"))## [1] -0.01738788
Reading the datasets into Spark environment.
spark_rating <- spark_read_csv(sc, "spark_rating", "C:/Users/mayowa/Downloads/ml-latest-small/ml-latest-small/ratings.csv", header = TRUE,infer_schema = TRUE,charset = "UTF-8", null_value = NULL,repartition = 0, memory = TRUE, overwrite = TRUE)
spark_movies <- spark_read_csv(sc, "spark_movies", "C:/Users/mayowa/Downloads/ml-latest-small/ml-latest-small/movies.csv", header = TRUE,infer_schema = TRUE,charset = "UTF-8", null_value = NULL,repartition = 0, memory = TRUE, overwrite = TRUE)
class(spark_rating) # The class is now spark table,sql table etc## [1] "tbl_spark" "tbl_sql" "tbl_lazy" "tbl"
#class(spark_rating)Is it actually a SQL table? Lets check…
suppressMessages(library(DBI))
my_table <- DBI::dbGetQuery(sc , "SELECT * FROM spark_rating LIMIT 10")
kable(my_table)| userId | movieId | rating | timestamp |
|---|---|---|---|
| 1 | 31 | 2.5 | 1260759144 |
| 1 | 1029 | 3.0 | 1260759179 |
| 1 | 1061 | 3.0 | 1260759182 |
| 1 | 1129 | 2.0 | 1260759185 |
| 1 | 1172 | 4.0 | 1260759205 |
| 1 | 1263 | 2.0 | 1260759151 |
| 1 | 1287 | 2.0 | 1260759187 |
| 1 | 1293 | 2.0 | 1260759148 |
| 1 | 1339 | 3.5 | 1260759125 |
| 1 | 1343 | 2.0 | 1260759131 |
To implement a model build up, we will train our dataset and validate it using test dataset. This can be done by splitting them into test and train.
The train dataset would take 80% of the dataset, while the remaing 20% goes to test.
spark_rating <- select(spark_rating, -timestamp)
spark_train <- sdf_sample(spark_rating, fraction = 0.8, replacement = FALSE, seed = 123)
spark_test <- sdf_sample(spark_rating, fraction = 0.2, replacement = FALSE, seed = 123)
kable(head(spark_train))| userId | movieId | rating |
|---|---|---|
| 1 | 31 | 2.5 |
| 1 | 1172 | 4.0 |
| 1 | 1263 | 2.0 |
| 1 | 1287 | 2.0 |
| 1 | 1293 | 2.0 |
| 1 | 1343 | 2.0 |
kable(head(spark_test))| userId | movieId | rating |
|---|---|---|
| 1 | 1287 | 2 |
| 1 | 1343 | 2 |
| 1 | 2105 | 4 |
| 1 | 3671 | 3 |
| 2 | 153 | 4 |
| 2 | 185 | 3 |
Or this method.
partition <- sdf_partition(spark_rating,training=0.8, testing=0.2)
sdf_register(partition,c("train_spark","test_spark"))## $train_spark
## Source: query [8e+04 x 3]
## Database: spark connection master=local[4] app=sparklyr local=TRUE
##
## userId movieId rating
## <int> <int> <dbl>
## 1 1 31 2.5
## 2 1 1061 3.0
## 3 1 1172 4.0
## 4 1 1263 2.0
## 5 1 1287 2.0
## 6 1 1293 2.0
## 7 1 1339 3.5
## 8 1 1343 2.0
## 9 1 1371 2.5
## 10 1 1953 4.0
## # ... with 7.999e+04 more rows
##
## $test_spark
## Source: query [2e+04 x 3]
## Database: spark connection master=local[4] app=sparklyr local=TRUE
##
## userId movieId rating
## <int> <int> <dbl>
## 1 1 1029 3.0
## 2 1 1129 2.0
## 3 1 1405 1.0
## 4 1 2150 3.0
## 5 1 2455 2.5
## 6 2 150 5.0
## 7 2 153 4.0
## 8 2 161 3.0
## 9 2 235 3.0
## 10 2 261 4.0
## # ... with 1.999e+04 more rows
test_rating <- tbl(sc,"test_spark")
tab <- tbl(sc,"train_spark") %>% select(userId, movieId, rating)
rating_model <- tab %>% ml_decision_tree(response="rating", features=c("userId","movieId"))## * No rows dropped by 'na.omit' call
A side-by-side glipmse of original ratings values and predicted values using spark
pred_spark <- sdf_predict(rating_model, test_rating) %>% collect
kable(head(pred_spark))| userId | movieId | rating | prediction |
|---|---|---|---|
| 1 | 1029 | 3.0 | 3.769757 |
| 1 | 1129 | 2.0 | 3.769757 |
| 1 | 1405 | 1.0 | 3.380091 |
| 1 | 2150 | 3.0 | 3.846154 |
| 1 | 2455 | 2.5 | 3.163677 |
| 2 | 150 | 5.0 | 3.334603 |
The above table shows side-by-side prediction of the ratings.
sqrt(mean(with(pred_spark, pred_spark)^2))## [1] 14513.99
spark_disconnect(sc) # Disconnecting sparkgenre_list <- c("Action", "Adventure", "Animation", "Children", "Comedy", "Crime","Documentary", "Drama", "Fantasy","Film-Noir", "Horror", "Musical", "Mystery","Romance","Sci-Fi", "Thriller", "War", "Western")
mat_genre <- matrix(0,8571,18) #empty matrix
mat_genre[1,] <- genre_list #set first row to genre list
colnames(mat_genre) <- genre_list #set column names to genre list
#convert into dataframe and removing the first row,that was in genres list above
mat_genre_2 <- as.data.frame(mat_genre[-1,], stringsAsFactors=FALSE)
for (c in 1:ncol(mat_genre_2)) {
mat_genre_2[,c] <- as.integer(mat_genre_2[,c])
}Base R splitting of train and test dataset
set.seed(123)
ratings_df[is.na(ratings_df)] <- 0
samp_data <- ratings_df[sample(nrow(ratings_df)),]
samp_sub<- samp_data[,-c(4)]
train_dat <- subset(samp_sub[1:80003, ]) #80 percent
test_dat <- subset(samp_sub[80004:100004, ]) #20 percentTest and train data structures.
str(ratings_df)# Note the ommision of timestamp## 'data.frame': 100004 obs. of 4 variables:
## $ user : int 1 1 1 1 1 1 1 1 1 1 ...
## $ item : int 31 1029 1061 1129 1172 1263 1287 1293 1339 1343 ...
## $ rating : num 2.5 3 3 2 4 2 2 2 3.5 2 ...
## $ timestamp: int 1260759144 1260759179 1260759182 1260759185 1260759205 1260759151 1260759187 1260759148 1260759125 1260759131 ...
str(train_dat)## 'data.frame': 80003 obs. of 3 variables:
## $ user : int 212 547 294 587 624 23 384 595 396 326 ...
## $ item : int 2915 1569 6296 1269 3255 5952 2000 1220 292 3308 ...
## $ rating: num 3 3.5 4.5 4.5 4 4 4 4 4 3 ...
str(test_dat)## 'data.frame': 20001 obs. of 3 variables:
## $ user : int 647 664 316 486 262 203 509 367 388 451 ...
## $ item : int 2916 8528 6378 541 4914 913 3095 4963 1485 2858 ...
## $ rating: num 3 3.5 3 5 3.5 4 4 3 4 4 ...
Below we will reshape2 package to cast the train dataset, convert it to matrix first and later to recommerlab “realRatingMatrix”, normalized it and a visual representation of it (plot).
train_dat_casting <- acast(data=train_dat,train_dat$userId~train_dat$movieId)## Using rating as value column: use value.var to override.
## Aggregation function missing: defaulting to length
rating_matx <- as.matrix(train_dat_casting)
rating_ind <- as(rating_matx,"realRatingMatrix")
head(as(rating_ind ,"list"),1)## $.
## .
## 80003
head(as(rating_ind ,"data.frame"),1)## user item rating
## 1 . . 80003
image(rating_ind,main="Raw Ratings")#Raw--->Non-Normalizedrating_norm <-normalize(rating_ind)
image(rating_norm,main="Normalized Ratings")#Normalized# let us vectorised the movies_df
ratings_vec <- as.vector(movies_df)
#unique(ratings_vec)
ratings_vec <- ratings_vec[ratings_vec != 0]
ratings_vec <- factor(ratings_vec)
head(ratings_vec)## [1] 1 2 3 4 5 6
## 19150 Levels: 'burbs, The (1989) ... Zulu (2013)
test_data_mat <- as(test_dat, "realRatingMatrix")
test_dat_bin <- as(test_dat, "binaryRatingMatrix")library(recommenderlab)
movies_RRM <- as(movies_df, "realRatingMatrix")
views_per_movie <- colCounts(movies_RRM)
table_views <- data.frame(
movie = names(views_per_movie),
views = views_per_movie
)
table_views <- table_views[order(table_views$views, decreasing =
TRUE), ]
ggplot(table_views[1:7, ], aes(x = movie, y = views)) +
geom_bar(stat="identity") + theme(axis.text.x =
element_text(angle = 25, hjust = 1)) + ggtitle("Number of views
of the top movies")The above plot shows the top number of movies watched since 1989 to year 2005.
Cosine Similarity :
Thisis a measure of similarity between two non-zero vectors of an inner product space that measures the cosine of the angle between them.
$Similarity=cos()= $
users_sim <- similarity(movies_RRM[1:2500, ], method =
"cosine", which = "users")
image(as.matrix(users_sim), main = "Similarity in Users")ratings_matrix <- as(train_dat, "binaryRatingMatrix")
number_of_users <- colCounts(ratings_matrix);
qplot(number_of_users) + stat_bin(binwidth = 20) + ggtitle("Distribution of the number of users");## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
model2 <- Recommender(data = ratings_matrix, method = "UBCF", parameter = list(method = "Jaccard"))test_data_mat <- as(test_dat, "realRatingMatrix")
test_dat_bin <- as(test_dat, "binaryRatingMatrix")
recomm <- Recommender(test_data_mat[1:nrow(test_data_mat)],method="UBCF",
param=list(normalize="Z-score",method="Cosine"
,nn=5,minRating=1))## Available parameter (with default values):
## method = cosine
## nn = 25
## sample = FALSE
## normalize = center
## verbose = FALSE
recommed <-predict(recomm,test_data_mat[1:nrow(test_data_mat)],type="ratings")
recommed_topN <-predict(recomm,test_data_mat[1:nrow(test_data_mat)],type="topNList",n=10)head(as(recommed_topN,"list"),5)## $`1`
## [1] "2028" "922" "1197" "2959" "59369" "89745" "1663" "2109"
## [9] "2947" "6058"
##
## $`2`
## [1] "318" "110" "527" "5989" "8529" "79132" "63082" "84152"
## [9] "1" "2"
##
## $`3`
## [1] "356" "1580" "539" "2" "349" "364" "593" "597" "661" "1028"
##
## $`4`
## [1] "39" "1682" "377" "1545" "296" "349" "457" "236" "356" "357"
##
## $`5`
## [1] "337" "471" "562" "898" "912" "922" "930" "1029" "1057" "1175"
qplot(getRatings(test_data_mat),binwidth=1,col="blue",main="Ratings Plot",xlab="Ratings")hist(getRatings(test_data_mat),binwidth=1,col="black",breaks=15,main="Histogram of Ratings",xlab="Ratings");qplot(getRatings(rating_norm),binwidth=1,main="Normalized Ratings",xlab="Ratings")qplot(rowCounts(test_data_mat),binwidth=10,main="Movie Average Ratings",xlab="Number of users",ylab = "Number of movie ratings")qplot(colMeans(test_data_mat),binwidth=.1,main=" Mean Ratings ",xlab="Ratings",ylab = "Number of movies")rating_bin <- binarize(test_data_mat,minRating=1)
head(as(rating_bin,"matrix"),1)## 1 2 3 4 5 6 7 8 9 10 11 12
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 13 14 15 16 17 18 19 20 21 22 23 24
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 25 26 27 28 29 30 31 32 34 35 36 39
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 40 41 42 43 44 45 46 47 48 50 52 55
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 57 58 59 60 61 62 65 66 68 69 70 71
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 73 74 76 78 79 80 81 82 83 85 86 87
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 88 89 92 94 95 96 97 100 101 102 103 104
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 105 107 110 111 112 113 117 122 123 125 126 132
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 135 140 141 144 145 147 149 150 151 152 153 154
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 155 156 158 159 160 161 162 163 164 165 168 169
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 170 171 172 173 175 176 177 179 180 181 185 186
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 188 189 191 193 194 195 196 198 203 204 205 207
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 208 209 213 215 216 217 218 220 222 223 224 225
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 227 229 230 231 232 233 234 235 236 237 238 239
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 240 242 243 246 247 248 249 250 252 253 254 256
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 257 258 259 260 261 262 265 266 267 269 270 271
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 272 273 275 276 277 278 279 280 281 282 287 288
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 289 290 292 293 294 295 296 299 300 302 303 304
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 305 306 307 308 312 313 314 315 316 317 318 319
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 320 321 322 324 326 327 328 329 330 332 333 334
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 335 337 338 339 340 341 342 344 345 346 347 348
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 349 350 351 352 353 355 356 357 358 360 361 362
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 363 364 365 366 367 368 370 371 372 373 374 375
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 376 377 378 379 380 381 382 383 384 387 391 393
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 405 407 408 409 410 412 413 414 415 417 418 419
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 420 421 422 423 426 427 428 431 432 433 434 435
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 436 437 438 440 441 442 443 444 445 446 448 449
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 450 451 452 454 455 456 457 458 459 460 463 464
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 465 466 468 469 470 471 474 475 477 479 480 481
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 482 483 484 485 488 489 490 491 492 493 494 495
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 496 497 500 501 502 504 505 506 507 508 509 511
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 512 514 515 516 517 518 519 520 521 522 523 524
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 527 529 531 532 534 535 536 537 538 539 540 541
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 542 543 544 546 548 549 550 551 552 553 555 556
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 558 559 562 567 569 575 581 585 586 587 588 589
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 590 592 593 594 595 596 597 599 605 606 608 609
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 610 611 612 613 614 616 619 627 628 630 631 633
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 637 638 639 640 647 648 650 653 661 663 665 667
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 671 673 674 678 679 681 685 688 691 694 695 697
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 698 700 703 704 707 708 709 711 714 715 719 720
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 724 728 733 735 736 737 741 742 743 745 747 748
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 750 761 762 765 766 778 779 780 781 783 784 785
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 786 788 798 799 800 801 802 803 804 805 806 808
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 809 810 813 816 818 820 828 830 831 832 835 837
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 838 839 840 841 846 848 849 850 852 858 861 866
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 869 879 880 892 898 899 900 901 902 903 904 905
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 906 907 908 909 910 911 912 913 914 915 916 918
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 919 920 921 922 923 924 926 927 928 929 930 931
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 932 933 934 935 936 937 938 940 942 943 944 945
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 946 947 948 949 950 951 952 953 954 955 957 960
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 961 965 966 968 969 970 971 980 982 986 991 994
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 996 998 999 1003 1004 1005 1007 1008 1009 1012 1013 1014
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1015 1016 1017 1018 1019 1020 1021 1022 1023 1025 1027 1028
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1029 1030 1031 1032 1033 1034 1035 1036 1037 1041 1042 1043
## 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1044 1046 1047 1049 1050 1051 1053 1055 1057 1059 1060 1061
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1063 1064 1066 1068 1073 1077 1078 1079 1080 1081 1082 1083
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1096 1097 1099 1100 1101 1103 1104 1105 1112 1114 1120 1124
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1125 1126 1127 1128 1129 1130 1131 1132 1133 1135 1136 1147
## 1 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1148 1150 1161 1162 1169 1171 1172 1173 1175 1176 1177 1178
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1179 1181 1183 1184 1185 1186 1187 1188 1189 1190 1191 1193
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1194 1196 1197 1198 1199 1200 1201 1202 1203 1204 1206 1207
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1220 1221 1222 1223 1224 1225 1226 1227 1228 1230 1231 1232
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1233 1234 1235 1236 1237 1238 1240 1241 1242 1243 1244 1245
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1307 1310 1320 1321 1326 1327 1332 1333 1334 1335 1337 1339
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1340 1342 1343 1344 1345 1346 1347 1348 1349 1350 1352 1353
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1354 1355 1356 1357 1358 1359 1361 1363 1365 1366 1367 1370
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1385
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1387 1388 1389 1391 1392 1393 1394 1395 1396 1397 1399 1405
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## 1406 1407 1408 1409 1410 1411 1413 1414 1416 1422 1425 1429
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1432 1437 1438 1441 1442 1446 1447 1449 1453 1457 1458 1459
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1460 1461 1463 1464 1465 1466 1468 1474 1475 1476 1479 1480
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1483 1484 1485 1487 1488 1490 1493 1495 1497 1498 1499 1500
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1502 1503 1507 1508 1513 1515 1516 1517 1518 1525 1527 1529
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1537 1541 1542 1543 1544 1545 1546 1552 1554 1556 1562 1566
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1569 1572 1573 1580 1582 1584 1586 1587 1588 1589 1590 1591
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1592 1593 1594 1595 1597 1601 1604 1605 1608 1610 1611 1612
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1614 1615 1616 1617 1619 1620 1621 1623 1625 1626 1632 1633
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1635 1636 1639 1641 1642 1643 1644 1645 1646 1647 1648 1649
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1653 1655 1657 1658 1661 1663 1665 1672 1673 1674 1676 1678
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1680 1681 1682 1683 1684 1687 1688 1689 1690 1693 1694 1699
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1701 1702 1703 1704 1707 1711 1713 1715 1717 1719 1721 1722
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1726 1727 1728 1729 1730 1732 1734 1739 1747 1748 1752 1753
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1760 1769 1772 1777 1779 1784 1791 1792 1797 1799 1801 1804
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1805 1807 1809 1810 1816 1821 1824 1826 1827 1831 1833 1834
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1835 1836 1839 1840 1841 1845 1848 1852 1856 1858 1859 1862
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1863 1865 1866 1873 1874 1875 1876 1882 1883 1884 1885 1887
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1888 1892 1894 1895 1897 1900 1904 1907 1909 1911 1912 1914
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1916 1917 1918 1920 1921 1923 1924 1925 1926 1927 1928 1931
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1969 1970 1972 1974 1975 1977 1979 1982 1983 1984 1991 1992
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1993 1994 1995 1997 2000 2001 2002 2003 2004 2005 2006 2007
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2021 2022 2023 2025 2026 2027 2028 2033 2034 2038 2040 2041
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2042 2044 2045 2046 2050 2052 2053 2054 2055 2056 2057 2058
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2059 2060 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2075 2076 2077 2078 2080 2081 2082 2083 2084 2085 2087 2088
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2089 2090 2092 2093 2094 2096 2099 2100 2101 2104 2105 2106
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2107 2108 2109 2110 2111 2112 2114 2115 2116 2117 2118 2119
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2120 2121 2122 2123 2124 2125 2126 2128 2130 2132 2133 2134
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2148 2149 2150 2151 2152 2153 2155 2159 2160 2161 2162 2163
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2164 2165 2166 2167 2169 2170 2171 2173 2174 2176 2178 2183
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2184 2186 2187 2188 2193 2194 2201 2202 2203 2208 2231 2232
## 1 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2236 2237 2240 2241 2243 2244 2245 2247 2248 2249 2250 2252
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2253 2257 2262 2265 2266 2268 2269 2272 2273 2278 2279 2280
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2282 2286 2287 2288 2289 2290 2291 2294 2295 2296 2300 2301
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2302 2303 2306 2307 2310 2311 2312 2313 2316 2318 2320 2321
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2322 2324 2329 2331 2333 2334 2335 2336 2337 2338 2340 2345
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2346 2347 2348 2349 2351 2352 2353 2355 2357 2359 2360 2361
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2363 2366 2367 2369 2370 2371 2372 2373 2374 2375 2376 2378
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2379 2380 2381 2382 2383 2384 2385 2386 2387 2389 2391 2392
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2394 2395 2396 2397 2398 2399 2401 2402 2403 2404 2405 2406
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2407 2408 2409 2410 2411 2412 2413 2414 2416 2417 2418 2419
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2420 2421 2422 2423 2424 2425 2427 2428 2429 2430 2431 2432
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2433 2434 2436 2439 2443 2445 2447 2448 2450 2451 2453 2454
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2455 2456 2457 2458 2459 2460 2462 2463 2464 2465 2467 2468
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2469 2470 2471 2473 2474 2478 2481 2482 2483 2485 2488 2490
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2491 2492 2493 2495 2496 2497 2500 2501 2502 2504 2505 2506
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2513 2517 2518 2520 2521 2522 2523 2524 2527 2528 2529 2530
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2531 2532 2533 2535 2537 2539 2541 2542 2546 2548 2549 2551
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2554 2557 2558 2561 2563 2565 2567 2568 2571 2572 2574 2575
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2577 2579 2580 2581 2582 2583 2587 2589 2590 2594 2596 2597
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2598 2599 2600 2605 2606 2609 2610 2612 2613 2616 2617 2622
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2625 2626 2628 2629 2630 2634 2635 2636 2637 2638 2639 2640
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2641 2642 2643 2648 2649 2651 2653 2654 2657 2659 2661 2662
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2664 2668 2671 2672 2676 2681 2682 2683 2686 2687 2688 2690
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2692 2693 2694 2696 2699 2700 2701 2702 2704 2706 2707 2709
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2710 2712 2713 2715 2716 2717 2718 2719 2720 2722 2723 2724
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2739 2745 2746 2747 2749 2750 2752 2753 2754 2757 2759 2761
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2762 2763 2764 2769 2770 2771 2772 2774 2779 2780 2781 2782
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2787 2788 2789 2791 2792 2793 2794 2795 2796 2797 2798 2799
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2801 2802 2803 2804 2805 2806 2808 2809 2810 2812 2815 2816
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2819 2820 2822 2826 2827 2828 2829 2836 2840 2841 2843 2845
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2847 2851 2852 2855 2856 2857 2858 2859 2860 2861 2862 2863
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2866 2868 2870 2871 2872 2875 2876 2877 2878 2879 2880 2881
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2882 2883 2885 2888 2889 2890 2892 2899 2900 2902 2903 2905
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2906 2907 2908 2912 2915 2916 2917 2918 2919 2920 2921 2922
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2924 2925 2926 2929 2935 2936 2937 2938 2940 2941 2942 2943
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2944 2946 2947 2948 2949 2950 2951 2952 2953 2959 2961 2966
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2967 2968 2970 2971 2973 2974 2976 2978 2985 2986 2987 2988
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2989 2990 2991 2992 2993 2995 2996 2997 3000 3004 3005 3006
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3007 3011 3016 3017 3018 3019 3020 3022 3028 3030 3033 3034
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3035 3036 3037 3039 3040 3042 3044 3045 3051 3052 3053 3057
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3060 3061 3062 3064 3066 3067 3068 3069 3070 3071 3072 3074
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3076 3077 3079 3081 3082 3083 3086 3087 3088 3089 3090 3094
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3107 3108 3111 3113 3114 3115 3117 3120 3122 3125 3127 3129
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3130 3133 3134 3135 3138 3141 3142 3145 3146 3147 3148 3150
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3152 3153 3155 3156 3157 3159 3160 3163 3165 3167 3168 3169
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3173 3174 3175 3176 3178 3179 3180 3181 3182 3183 3185 3186
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3189 3190 3194 3196 3198 3199 3201 3203 3204 3208 3210 3211
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3213 3217 3218 3219 3223 3235 3238 3240 3241 3243 3244 3246
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3270 3271
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3272 3273 3274 3275 3285 3286 3287 3289 3296 3298 3299 3300
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3301 3306 3307 3308 3316 3317 3318 3324 3326 3328 3330 3331
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3334 3340 3341 3347 3350 3354 3355 3358 3359 3360 3361 3362
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3363 3364 3365 3368 3371 3384 3385 3386 3387 3388 3390 3392
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3394 3396 3397 3398 3400 3401 3404 3406 3408 3409 3412 3414
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3418 3420 3421 3422 3423 3424 3426 3428 3429 3430 3434 3435
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3436 3438 3439 3440 3441 3442 3444 3445 3446 3448 3450 3451
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3452 3457 3459 3461 3462 3466 3467 3468 3469 3470 3471 3476
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3477 3478 3479 3481 3483 3484 3489 3491 3494 3499 3501 3503
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3504 3505 3508 3509 3510 3512 3513 3515 3516 3519 3520 3521
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3524 3525 3526 3527 3528 3529 3534 3535 3536 3538 3539 3540
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3543 3544 3545 3546 3548 3549 3551 3552 3555 3556 3557 3559
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3563 3564 3565 3566 3569 3573 3574 3575 3576 3577 3578 3579
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3581 3590 3591 3593 3594 3604 3606 3608 3613 3614 3615 3616
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3617 3618 3623 3624 3626 3629 3633 3634 3635 3637 3638 3639
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3646 3649 3653 3654 3658 3668 3669 3671 3672 3673 3674 3675
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## 3676 3677 3679 3681 3682 3683 3684 3685 3686 3688 3689 3690
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3693 3694 3696 3697 3698 3699 3701 3702 3703 3704 3705 3706
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3709 3712 3713 3717 3723 3724 3726 3728 3729 3730 3731 3733
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3734 3735 3736 3739 3740 3741 3742 3744 3745 3747 3751 3752
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3753 3754 3755 3760 3761 3763 3766 3769 3771 3774 3783 3784
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3785 3786 3788 3789 3791 3792 3793 3794 3795 3798 3799 3801
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3802 3806 3809 3810 3811 3812 3813 3814 3819 3821 3822 3823
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3825 3826 3827 3831 3835 3836 3839 3840 3841 3843 3844 3849
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3852 3854 3857 3859 3861 3863 3864 3865 3868 3869 3870 3871
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3872 3873 3879 3882 3886 3892 3893 3896 3897 3903 3908 3910
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3911 3915 3916 3917 3918 3922 3925 3927 3928 3929 3932 3937
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3939 3943 3948 3949 3950 3952 3959 3963 3965 3967 3968 3969
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3972 3973 3975 3977 3978 3979 3980 3981 3983 3984 3986 3987
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 3988 3991 3992 3993 3994 3996 3997 3998 3999 4001 4002 4005
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4006 4007 4008 4009 4010 4011 4012 4014 4015 4016 4017 4018
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4019 4020 4021 4022 4023 4024 4025 4027 4029 4030 4031 4033
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4034 4036 4037 4039 4040 4041 4051 4054 4055 4056 4060 4061
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4062 4063 4066 4067 4069 4080 4081 4084 4085 4086 4088 4090
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4102 4103 4104 4105 4109 4116 4117 4121 4124 4128 4130 4132
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4144 4148 4149 4155 4156 4159 4161 4166 4167 4174 4177 4178
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4181 4184 4187 4190 4191 4205 4208 4210 4211 4212 4214 4217
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4218 4220 4221 4223 4225 4226 4232 4234 4235 4236 4237 4238
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4239 4246 4247 4252 4254 4255 4262 4263 4267 4270 4273 4274
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4275 4277 4280 4281 4282 4291 4292 4293 4296 4298 4299 4302
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4304 4306 4308 4310 4312 4316 4317 4318 4319 4321 4322 4326
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4327 4329 4333 4334 4337 4338 4340 4342 4343 4344 4345 4349
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4351 4356 4357 4359 4361 4366 4367 4369 4370 4371 4372 4375
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4378 4380 4381 4384 4388 4396 4406 4407 4410 4411 4420 4427
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4432 4437 4438 4441 4444 4446 4447 4448 4450 4452 4464 4465
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4467 4469 4470 4478 4480 4483 4487 4488 4489 4492 4496 4499
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4500 4501 4503 4508 4515 4518 4519 4520 4521 4522 4533 4535
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4537 4544 4545 4553 4557 4558 4562 4563 4564 4565 4568 4570
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4571 4577 4585 4592 4603 4612 4614 4616 4621 4622 4623 4627
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4628 4629 4634 4638 4639 4640 4641 4642 4643 4644 4649 4652
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4654 4658 4660 4664 4673 4677 4678 4681 4682 4686 4688 4692
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4700 4701 4705 4709 4710 4713 4714 4718 4719 4720 4721 4722
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4723 4727 4732 4733 4734 4736 4743 4744 4749 4753 4755 4756
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4757 4765 4766 4768 4772 4775 4776 4783 4784 4787 4792 4795
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4799 4800 4803 4804 4809 4811 4812 4814 4816 4818 4822 4823
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4831 4832 4833 4834 4835 4836 4837 4842 4844 4846 4848 4854
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4855 4857 4859 4865 4866 4873 4874 4878 4880 4881 4886 4889
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4890 4896 4897 4898 4899 4901 4911 4912 4914 4915 4925 4929
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4930 4932 4936 4941 4945 4947 4951 4956 4958 4963 4965 4967
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4968 4969 4970 4971 4973 4974 4975 4978 4979 4980 4993 4994
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 4995 4998 5002 5008 5009 5010 5013 5014 5015 5017 5018 5025
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5026 5027 5034 5046 5047 5048 5049 5053 5055 5060 5061 5064
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5066 5069 5072 5073 5074 5081 5095 5097 5103 5107 5108 5110
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5114 5119 5120 5122 5128 5134 5135 5146 5151 5152 5161 5165
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5168 5171 5172 5193 5202 5203 5214 5218 5219 5220 5222 5225
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5226 5237 5241 5242 5243 5247 5250 5254 5258 5264 5266 5267
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5269 5275 5276 5277 5283 5291 5292 5293 5294 5296 5298 5299
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5301 5302 5303 5304 5308 5309 5312 5313 5316 5319 5323 5329
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5337 5339 5341 5346 5349 5357 5363 5364 5373 5375 5377 5378
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5380 5382 5384 5385 5388 5389 5391 5400 5401 5404 5415 5418
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5419 5421 5438 5444 5445 5446 5447 5449 5450 5452 5459 5463
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5464 5470 5477 5478 5479 5480 5481 5483 5489 5490 5500 5502
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5504 5505 5507 5508 5517 5521 5522 5523 5524 5525 5527 5528
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5530 5534 5535 5539 5540 5541 5544 5553 5562 5568 5569 5572
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5574 5577 5585 5588 5602 5607 5609 5618 5620 5621 5625 5628
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5630 5633 5636 5641 5642 5644 5650 5667 5668 5669 5670 5673
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5675 5678 5679 5682 5690 5693 5703 5705 5707 5712 5729 5735
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5737 5747 5752 5765 5772 5777 5779 5782 5784 5785 5787 5788
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5791 5792 5796 5801 5809 5810 5812 5816 5826 5828 5834 5836
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5853 5859 5867 5872 5875 5876 5878 5879 5880 5881 5882 5891
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5899 5900 5902 5903 5915 5917 5918 5927 5933 5938 5940 5942
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5943 5944 5945 5949 5952 5954 5955 5956 5957 5959 5963 5968
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 5969 5971 5985 5989 5991 5992 5994 5995 6001 6003 6005 6013
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6014 6016 6021 6027 6058 6059 6062 6092 6101 6104 6114 6115
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6122 6125 6133 6143 6148 6154 6155 6156 6157 6162 6182 6184
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6187 6188 6197 6214 6215 6218 6219 6227 6231 6235 6239 6240
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6242 6243 6249 6252 6260 6261 6263 6264 6268 6269 6271 6281
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6283 6287 6291 6295 6296 6297 6299 6303 6308 6314 6315 6316
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6318 6323 6331 6333 6350 6357 6358 6365 6367 6373 6375 6377
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6378 6379 6380 6383 6385 6390 6395 6405 6410 6412 6413 6424
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6426 6427 6428 6432 6433 6436 6440 6447 6448 6458 6461 6465
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6470 6476 6477 6480 6484 6498 6502 6503 6513 6521 6534 6535
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6537 6538 6539 6541 6548 6552 6561 6564 6565 6582 6584 6586
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6591 6592 6593 6595 6598 6599 6600 6612 6613 6615 6617 6618
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6620 6638 6639 6641 6650 6658 6659 6662 6665 6666 6669 6678
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6706 6707 6708 6709 6711 6718 6721 6724 6728 6731 6732 6753
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6754 6755 6763 6765 6768 6769 6770 6773 6774 6777 6783 6785
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6787 6788 6793 6796 6798 6800 6807 6811 6813 6816 6818 6820
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6851 6852 6856 6857 6863 6867 6869 6870 6873 6874 6879 6881
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6888 6889 6890 6893 6909 6918 6927 6932 6934 6936 6942 6944
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6947 6951 6952 6953 6954 6957 6958 6959 6963 6966 6971 6975
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6977 6979 6981 6982 6983 6985 6986 6987 6989 6990 6993 6995
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 6996 6999 7000 7001 7004 7005 7007 7008 7010 7013 7016 7017
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7022 7024 7025 7034 7036 7038 7046 7048 7055 7056 7058 7059
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7060 7063 7064 7065 7068 7072 7073 7074 7076 7078 7080 7084
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7089 7090 7091 7099 7101 7102 7107 7115 7116 7121 7123 7125
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7130 7132 7135 7137 7139 7142 7143 7147 7153 7154 7156 7158
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7161 7162 7163 7164 7173 7186 7206 7215 7216 7223 7234 7247
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7254 7255 7256 7265 7272 7285 7293 7302 7303 7305 7307 7308
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7316 7317 7318 7320 7323 7324 7325 7327 7346 7347 7348 7357
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7360 7361 7362 7367 7371 7373 7375 7376 7380 7381 7382 7386
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7387 7395 7396 7407 7411 7438 7444 7445 7448 7450 7451 7454
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7458 7460 7478 7481 7482 7484 7493 7502 7541 7560 7569 7570
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7572 7573 7577 7584 7587 7614 7615 7619 7649 7698 7714 7728
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7738 7748 7753 7764 7767 7792 7802 7810 7812 7822 7826 7827
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7831 7833 7834 7836 7840 7841 7842 7872 7882 7895 7899 7914
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 7925 7934 7935 7939 7941 7946 7980 7981 7983 7984 8003 8010
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8011 8012 8014 8019 8039 8094 8117 8125 8129 8132 8137 8138
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8154 8157 8158 8167 8169 8183 8195 8196 8199 8207 8225 8228
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8235 8239 8261 8264 8266 8290 8327 8331 8337 8360 8361 8363
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8366 8368 8369 8370 8371 8372 8373 8376 8385 8392 8423 8447
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8462 8464 8493 8507 8525 8528 8529 8530 8533 8537 8544 8574
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8581 8596 8600 8607 8610 8612 8614 8618 8622 8623 8625 8633
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8636 8638 8640 8641 8644 8645 8661 8665 8666 8667 8670 8695
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8718 8727 8730 8745 8751 8754 8783 8784 8796 8798 8807 8808
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8810 8811 8820 8827 8830 8831 8835 8836 8840 8861 8865 8866
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8870 8873 8874 8879 8880 8906 8907 8910 8914 8917 8918 8920
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8927 8928 8937 8938 8946 8947 8948 8949 8950 8957 8958 8961
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8963 8966 8969 8970 8972 8973 8981 8983 8984 8985 8986 8988
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 8998 9010 25750 25752 25769 25788 25807 25825 25827 25850 25868 25874
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 25901 25937 25965 25971 26003 26009 26025 26052 26079 26084 26131 26133
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 26152 26178 26242 26258 26268 26271 26302 26317 26326 26346 26350 26366
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 26393 26400 26403 26404 26413 26472 26492 26494 26524 26547 26562 26581
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 26587 26606 26614 26649 26662 26701 26729 26731 26776 26809 26810 26838
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 26840 26865 26915 26974 27075 27156 27253 27255 27317 27322 27329 27338
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 27373 27397 27410 27416 27478 27482 27604 27611 27660 27674 27700 27704
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 27706 27721 27728 27731 27751 27768 27773 27778 27788 27790 27793 27801
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 27803 27808 27815 27821 27822 27826 27831 27838 27850 27867 27873 27878
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 27899 27904 27912 27922 30707 30712 30745 30749 30793 30803 30810 30812
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 30816 30820 30822 30825 30894 31026 31150 31162 31193 31221 31225 31284
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 31374 31410 31427 31431 31433 31435 31437 31522 31658 31660 31685 31696
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 31700 31878 31930 31952 32017 32025 32029 32031 32153 32234 32371 32395
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 32444 32456 32515 32582 32587 32598 32632 32735 32825 32844 32853 32943
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 33004 33124 33145 33154 33164 33166 33171 33312 33358 33437 33493 33587
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 33615 33621 33639 33660 33669 33679 33681 33683 33794 33817 33834 33836
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 33838 33880 33903 34018 34048 34143 34150 34153 34162 34164 34271 34319
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 34321 34323 34332 34334 34359 34364 34405 34435 34437 34523 34528 34530
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 34534 34542 34552 35836 35957 36152 36276 36517 36519 36525 36527 36529
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 36708 37240 37380 37386 37727 37729 37731 37733 37736 37741 37830 37857
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 38038 38061 38886 38992 38994 39183 39231 39234 39292 39398 39427 39435
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 39444 39446 39869 40148 40278 40339 40412 40414 40583 40629 40732 40815
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 40819 40851 41226 41285 41566 41569 41571 41714 41716 41997 42002 42004
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 42011 42015 42163 42191 42351 42418 42632 42677 42681 42723 42725 42728
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 42738 42946 43351 43558 43560 43635 43836 43869 43910 43917 43919 43928
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 43932 43936 44004 44022 44191 44193 44195 44199 44204 44555 44587 44613
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 44633 44665 44694 44709 44761 44788 44840 44972 44974 45172 45183 45186
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 45208 45210 45431 45447 45499 45501 45506 45517 45521 45720 45722 45728
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 45732 45880 45950 46062 46322 46335 46530 46578 46723 46850 46855 46948
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 46965 46967 46970 46972 46976 47044 47099 47152 47200 47254 47330 47382
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 47423 47491 47518 47610 47640 47721 47728 47815 47937 47978 47997 47999
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 48043 48082 48165 48301 48304 48322 48385 48394 48516 48520 48522 48593
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 48596 48660 48696 48738 48741 48774 48780 48783 48872 48877 48982 48997
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 49132 49272 49274 49278 49280 49286 49396 49528 49530 49647 49649 49651
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 49772 49822 49824 49910 49932 49957 50068 50147 50601 50651 50658 50703
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 50740 50742 50794 50798 50802 50872 50954 51077 51080 51086 51207 51255
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 51304 51372 51380 51418 51540 51662 51705 51709 51884 51925 51935 52245
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 52281 52287 52319 52328 52435 52458 52604 52606 52644 52694 52722 52767
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 52885 52913 52952 52973 52975 53000 53024 53121 53123 53125 53318 53322
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 53326 53464 53468 53519 53550 53956 53972 53974 53993 53996 53999 54001
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 54004 54190 54259 54272 54276 54286 54290 54331 54372 54503 54513 54732
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 54775 54881 54995 54997 55031 55052 55063 55071 55118 55232 55247 55250
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 55253 55267 55276 55280 55282 55290 55363 55442 55444 55451 55577 55757
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 55765 55768 55805 55820 55830 55851 55908 55995 55999 56145 56152 56156
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 56169 56171 56174 56176 56251 56286 56339 56367 56587 56607 56715 56757
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 56775 56782 56788 56801 56805 56885 56921 57274 57326 57368 57401 57430
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 57504 57526 57528 57532 57640 57669 58025 58029 58156 58293 58295 58299
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 58303 58306 58315 58347 58365 58520 58559 58655 58803 58964 58998 59022
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 59037 59126 59141 59306 59315 59333 59369 59387 59392 59421 59501 59615
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 59784 59810 59900 60040 60069 60072 60074 60126 60128 60295 60382 60487
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 60684 60756 60832 60950 61024 61026 61132 61167 61236 61240 61323 61361
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 61646 62081 62250 62344 62378 62434 62511 62956 62999 63072 63082 63113
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 63131 63436 63479 63808 63853 63859 63876 63992 64034 64249 64338 64497
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 64575 64614 64620 64695 64716 64839 64957 64969 64983 64993 65126 65130
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 65133 65259 65261 65418 65465 65514 65585 65665 65682 65802 66019 66066
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 66097 66130 66198 66203 66297 66310 66317 66427 66509 66665 66686 66934
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 67087 67193 67197 67255 67408 67665 67734 67923 67997 68073 68157 68159
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 68205 68237 68319 68347 68358 68486 68554 68791 68884 68901 68932 68945
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 68954 68959 69122 69275 69278 69280 69306 69406 69436 69481 69524 69526
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 69604 69606 69640 69644 69712 69746 69757 69784 69821 69844 69945 69951
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 70183 70188 70282 70286 70293 70599 70862 71033 71057 71106 71108 71131
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 71135 71248 71254 71264 71282 71304 71462 71464 71520 71535 71579 71732
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 71745 71838 71899 72011 72043 72209 72226 72378 72386 72395 72405 72641
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 72731 72737 72781 72998 73015 73017 73023 73101 73106 73266 73268 73290
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 73319 73321 73344 73469 73741 73808 73929 74089 74115 74154 74228 74275
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 74327 74450 74458 74486 74530 74532 74545 74580 74630 74685 74688 74698
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 74740 74789 74795 74851 74916 74948 75805 75823 75983 76060 76077 76091
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 76093 76111 76210 76251 76293 76303 77291 77359 77421 77455 77561 77658
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 77800 77846 78034 78209 78316 78499 78517 78574 78637 78836 79006 79057
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 79091 79132 79185 79242 79251 79259 79293 79299 79428 79553 79592 79686
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 79695 79702 79720 79796 80026 80126 80166 80219 80350 80363 80463 80489
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 80549 80551 80590 80727 80844 80862 80906 80969 81229 81512 81537 81562
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 81564 81591 81834 81845 81847 81932 82095 82169 82202 82378 82459 82461
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 82463 82852 82854 82934 83132 83134 83270 83332 83374 83480 83506 83613
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 83803 84152 84187 84236 84374 84392 84615 84637 84772 84844 84944 84952
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 84954 85022 85131 85179 85342 85367 85412 85414 85510 85774 85788 85796
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 85881 86142 86190 86293 86298 86320 86332 86345 86377 86548 86626 86644
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 86833 86880 86882 86911 87192 87222 87232 87234 87306 87383 87483 87485
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 87520 87529 87598 87660 87884 88125 88129 88140 88163 88179 88405 88744
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 88785 88810 88812 89085 89118 89260 89388 89470 89492 89745 89753 89759
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 89761 89774 89804 89837 89840 89864 89881 89904 90057 90266 90345 90376
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 90439 90647 90746 90866 90947 91077 91199 91273 91286 91355 91414 91483
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 91485 91500 91529 91535 91542 91630 91653 91658 91688 91842 92008 92210
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 92234 92259 92264 92420 92424 92439 92498 92507 92509 92535 92613 92665
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 92756 93272 93320 93326 93363 93422 93510 93831 93838 93840 94018 94266
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 94466 94478 94677 94777 94780 94833 94864 94959 95088 95115 95135 95147
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 95165 95167 95201 95207 95309 95441 95443 95449 95510 95558 95583 95720
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 95782 95875 96020 96079 96110 96417 96588 96610 96616 96667 96737 96821
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 96829 96861 97168 97225 97304 97306 97395 97470 97673 97752 97757 97826
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 97836 97860 97913 97921 97923 97938 97957 98056 98124 98154 98230 98243
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 98279 98369 98491 98809 98908 98961 99007 99106 99112 99114 99117 99145
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 99149 99270 99320 99437 99615 99675 99728 99813 99912 100163 100383
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 100498 100556 100714 100745 101088 101112 101283 101531 101577 101612
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 101741 101850 101864 101947 102123 102125 102165 102194 102278 102378
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 102407 102445 102481 102666 102684 102686 102716 102800 102903 102993
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 103042 103137 103141 103228 103235 103249 103253 103279 103335 103339
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 103372 103384 103543 103624 103655 103688 103755 103813 103883 103984
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 104074 104211 104241 104283 104312 104339 104374 104419 104590 104760
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 104841 104879 104913 104944 105037 105197 105213 105504 105755 105844
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 106002 106062 106072 106100 106204 106330 106438 106487 106489 106491
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 106540 106542 106696 106782 106916 106918 106920 107069 107406 107516
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 107769 107945 107953 108090 108188 108190 108447 108583 108709 108727
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 108729 108932 108981 109074 109249 109317 109372 109374 109487 109576
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 109578 109846 109848 109864 110102 110501 110553 110586 110591 110645
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 110730 110771 111360 111362 111443 111529 111617 111622 111680 111743
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 111759 111781 111913 111921 112171 112175 112183 112277 112290 112370
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 112399 112421 112515 112552 112556 112623 112788 112818 112852 112911
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 112921 113275 113345 113348 113378 113565 113705 113780 113829 114028
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 114074 114180 114552 114662 114707 114762 115122 115151 115210 115231
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 115534 115569 115617 115713 116136 116161 116413 116419 116797 116799
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 116823 116849 116855 116897 116939 117176 117192 117851 118248 118334
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 118468 118696 118880 118900 118924 119141 119145 120466 120637 120799
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 121113 122882 122886 122892 122900 122902 122904 122920 123947 125916
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 126006 126420 126430 127108 127152 127164 127178 127198 127204 127206
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 128360 128512 129191 129364 129514 129737 129937 130073 130522 130682
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 130960 131013 131168 131724 132046 132074 132496 132618 132796 132888
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 133419 133545 133824 134130 134170 134368 134393 134853 135133 135264
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 135518 135536 135567 135569 135887 136018 136020 136305 136562 136654
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 136864 137337 138036 138208 139644 140267 140711 140715 140751 140755
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 141688 142068 142258 142448 142488 142507 143472 143859 144620 144714
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 145150 146656 146682 147006 147037 147426 147845 148626 149354 149532
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 150548 152077 152081 152844 155611 156387 156607 156609 157296 157407
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 157667 158314 159093 159755 160080 160438 160590 161155 161918 163949
## 1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
recomm_IBCF <- Recommender(test_data_mat[1:nrow(test_data_mat)],method="IBCF",
param=list(normalize="Z-score",method="Cosine"
,nn=5,minRating=1))## Available parameter (with default values):
## k = 30
## method = Cosine
## normalize = center
## normalize_sim_matrix = FALSE
## alpha = 0.5
## na_as_zero = FALSE
## verbose = FALSE
comb_RRM <- as(combined_dataset, "realRatingMatrix")
movies_ratings <- comb_RRM[rowCounts(comb_RRM) > 50,colCounts(comb_RRM) > 100]We will use bootstrapping to sample same user more than once, so that we make have more user(s) to be tested.
eval_scheme <- evaluationScheme(data = movies_ratings, method = "bootstrap", train = 0.8, given = 2, goodRating =3, k = 1)eval_recomm <- Recommender(data = getData(eval_scheme, "train"),method = "IBCF", parameter = NULL)eval_prediction <- predict(object = eval_recomm, newdata =getData(eval_scheme, "known"), n = 10, type = "ratings")qplot(rowCounts(eval_prediction)) + geom_histogram(binwidth = 10) + ggtitle("Distribution of movies per user")## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Root Mean Square Error (RMSE): This is frequently used measure of the differences between values (sample and population values) predicted by a model or an estimator and the values actually observed. i.e used to measure the standard deviation between the real and predicted values.
\(\sqrt { \sum _{ t=1 }^{ n }{ { ({ \hat { y } }_{ t }-\quad { y }_{ t }\quad ) }^{ 2 }/\quad n } }\)
Mean Sqaure Error (MSE): This being a risk fuction is used to measures the average of the squares of the errors or deviations-that is, the difference between the mean of an estimator and what is estimated.
\(MSE\quad =\quad \frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { (\quad \hat { { Y }_{ i } } -\quad { Y }_{ i }\quad ) }^{ 2 } }\)
Mean Absolute Error (MAE): As the name implies, it is the mean of absolute different between estimator and what is estimated.
\(MAE\quad =\quad \frac { \sum _{ i=1 }^{ n }{ |{ y }_{ i }\quad -\quad { x }_{ i }|\quad \quad \quad } }{ n }\)
eval_pred_accuracy <- calcPredictionAccuracy(x = eval_prediction, data = getData(eval_scheme, "unknown"), byUser =TRUE)
output <- evaluate(x = eval_scheme, method = "IBCF", n =seq(10, 100, 10))## IBCF run fold/sample [model time/prediction time]
## 1 [0.04sec/0.03sec]
kable(head(eval_pred_accuracy))| RMSE | MSE | MAE | |
|---|---|---|---|
| 2 | NaN | NaN | NaN |
| 3 | 1.5448411 | 2.3865340 | 1.2607948 |
| 4 | NaN | NaN | NaN |
| 8 | 0.7316053 | 0.5352463 | 0.5555457 |
| 12 | 2.5495098 | 6.5000000 | 2.5000000 |
| 13 | 0.9258201 | 0.8571429 | 0.5714286 |
kable(head(getConfusionMatrix(output)[1]))
|
plot(output, annotate = TRUE, main = "ROC curve")plot(output, "prec/rec", annotate = TRUE, main = "Precision-recall")Conclusion:
From the analysis above, we can deduce that the recommendation system help the following:
Recommender system will always add company own marketing and inventory control directive to the customer’s profile to feature product that are promotionally prices, on clearance overstocked. It also enables flexibility to control what items are highlighted by the engine.
Recommender system also help to reduce the workload of IT department due to large data that may required to create a personal shopping experience.
It will make life easier for consumer of such products or services, because it will give them more time to do something else.
Recommendersystem will provide accurate and up to the minute report to both consumer/client and company about the site and directions.