Reem Soliman
May 13, 2017
May 13th, 2017 We are using plotly to plot “emissions” data set, which is listing GDP, GDP per capita, and CO2 emissions for 1999.
data(emissions)
summary(emissions)## GDP perCapita CO2
## Min. : 59900 Min. : 2507 Min. : 54.0
## 1st Qu.: 123100 1st Qu.:13393 1st Qu.: 77.0
## Median : 206250 Median :20993 Median : 200.0
## Mean : 830427 Mean :17724 Mean : 669.4
## 3rd Qu.: 683500 3rd Qu.:22250 3rd Qu.: 547.5
## Max. :8083000 Max. :29647 Max. :6750.0
countryName <- rownames(emissions)
em <- cbind(countryName, emissions)
rownames(em) <- NULL
em## countryName GDP perCapita CO2
## 1 UnitedStates 8083000 29647 6750
## 2 Japan 3080000 24409 1320
## 3 Germany 1740000 21197 1740
## 4 France 1320000 22381 550
## 5 UnitedKingdom 1242000 21010 675
## 6 Italy 1240000 21856 540
## 7 Russia 692000 4727 2000
## 8 Canada 658000 21221 700
## 9 Spain 642400 16401 370
## 10 Australia 394000 20976 480
## 11 Netherlands 343900 21755 240
## 12 Poland 280700 7270 400
## 13 Belgium 236300 23208 145
## 14 Sweden 176200 19773 75
## 15 Austria 174100 21390 80
## 16 Switzerland 172400 23696 54
## 17 Portugal 149500 15074 75
## 18 Greece 137400 12833 125
## 19 Ukraine 124900 2507 420
## 20 Denmark 122500 22868 75
## 21 Norway 120500 27149 56
## 22 Romania 114200 5136 160
## 23 CzechRepublic 111900 10885 150
## 24 Finland 102100 19793 76
## 25 Hungary 73200 7186 85
## 26 Ireland 59900 16488 63