Caluclate effect sizes for standarised mean differences
# dat<-read.csv('data.csv') ## No exisiting effect sizes
dat <- read.csv("data_ostracism.csv") ## Effect size in columns vi and yi
if (!"vi" %in% colnames(dat)) {
dat_ES <- escalc(measure = "SMD", m1i = Intervention.Mean, sd1i = Intervention.SD,
n1i = Intervention.N, m2i = Control.Mean, sd2i = Control.SD, n2i = Control.N,
data = dat)
write.csv(dat_ES, "dat_ES.csv")
} else {
dat_ES <- dat
attrs <- NULL
attrs$measure <- "SMD"
attrs$ni <- dat$Intervention.N + dat$Control.N
attributes(dat_ES$yi) <- attrs
}
Plots
Forest plot
# forest(dat_MA)
forest_rma(dat_MA, study_labels = dat_ES$Study.ID, format_options = list(colour = "black",
shape = 15, text_size = 4, banded = TRUE))

Funnel plot
funnel(dat_MA, back = "white")
