x<-seq(0, 10, 1) #Creamos Varaible Aleatoria
binom_pdf<-dbinom(x, 5, 0.3)
x
## [1] 0 1 2 3 4 5 6 7 8 9 10
binom_pdf
## [1] 0.16807 0.36015 0.30870 0.13230 0.02835 0.00243 0.00000 0.00000
## [9] 0.00000 0.00000 0.00000
barplot(binom_pdf,
xlab="Variable Aleatoria",
ylab="Densidad",
main = "Distibución Binomial")
# CDF distribución Binomial
binom_cdf<-pbinom(x, 10, 0.3)
binom_cdf
## [1] 0.02824752 0.14930835 0.38278279 0.64961072 0.84973167 0.95265101
## [7] 0.98940792 0.99840961 0.99985631 0.99999410 1.00000000
plot(x, binom_cdf, type="b", lwd=3,
xlab="Variable Aleatoria",
ylab="Probabilidad",
main="CDF",
col="blue")
# Continuas
y<-seq(10, 90, 0.1)#Dominio
norm_pdf<-dnorm(y, mean(y), 12)
plot(y,norm_pdf, lwd=3, type="s",
ylab="Densidad",
xlab="Variable Aleatoria",
main="Distribución Normal",
col="red")
# CDF Distibucion Nomral
norm_cdf<-function(z1, z2){
A1<-pnorm(z1, mean(y), 12)
A2<-pnorm(z2, mean(y), 12)
round(A2 - A1, 4)
}
norm_cdf(30,40)
## [1] 0.1545