Dataset source : Chicago Police Department.
Sneak peak into data.
| DATE | CAMERA ID | ADDRESS | VIOLATIONS | LATITUDE | LONGITUDE | LOCATION |
|---|---|---|---|---|---|---|
| 2014-07-01 | CHI003 | 4124 W FOSTER AVE | 123 | 41.97561 | -87.73167 | (41.9756053, -87.7316698) |
| 2014-07-01 | CHI004 | 5120 N PULASKI | 68 | 41.97433 | -87.72835 | (41.9743327, -87.728347) |
| 2014-07-01 | CHI005 | 2080 W PERSHING | 68 | 41.82319 | -87.67735 | (41.8231888, -87.6773488) |
| 2014-07-01 | CHI007 | 3843 S WESTERN | 75 | 41.82356 | -87.68472 | (41.823564, -87.6847211) |
| 2014-07-01 | CHI008 | 3655 W JACKSON | 15 | 41.87707 | -87.71817 | (41.8770708, -87.7181683) |
viols(2014)
## `geom_smooth()` using method = 'loess'
viols(2015)
## `geom_smooth()` using method = 'loess'
viols(2016)
## `geom_smooth()` using method = 'loess'
From the plots for all three years, there is clearly an uptick in speed camera violations around April-May.
kable(cData3[1:10,])
| CAMERA ID | LONGITUDE | LATITUDE | Total violations |
|---|---|---|---|
| CHI029 | -87.61188 | 41.79349 | 27519 |
| CHI120 | -87.52985 | 41.70758 | 27100 |
| CHI045 | -87.63352 | 41.66317 | 26915 |
| CHI021 | -87.69867 | 41.86041 | 26891 |
| CHI095 | -87.65857 | 41.95454 | 21193 |
| CHI119 | -87.65871 | 41.79423 | 19823 |
| CHI003 | -87.73167 | 41.97561 | 19654 |
| CHI079 | -87.69620 | 41.95388 | 18643 |
| CHI058 | -87.77037 | 41.87719 | 14810 |
| CHI121 | -87.65786 | 41.79365 | 14660 |
kable(cData3[1:10,])
| CAMERA ID | LONGITUDE | LATITUDE | Total violations |
|---|---|---|---|
| CHI149 | -87.74772 | 41.97013 | 94073 |
| CHI045 | -87.63352 | 41.66317 | 58415 |
| CHI021 | -87.69867 | 41.86041 | 46889 |
| CHI003 | -87.73167 | 41.97561 | 39922 |
| CHI120 | -87.52985 | 41.70758 | 34302 |
| CHI079 | -87.69620 | 41.95388 | 31855 |
| CHI147 | -87.74908 | 41.96790 | 30940 |
| CHI095 | -87.65857 | 41.95454 | 30313 |
| CHI007 | -87.68472 | 41.82356 | 27483 |
| CHI029 | -87.61188 | 41.79349 | 24750 |
kable(cData3[1:10,])
| CAMERA ID | LONGITUDE | LATITUDE | Total violations |
|---|---|---|---|
| CHI149 | -87.74772 | 41.97013 | 78230 |
| CHI045 | -87.63352 | 41.66317 | 58475 |
| CHI003 | -87.73167 | 41.97561 | 45508 |
| CHI021 | -87.69867 | 41.86041 | 44850 |
| CHI079 | -87.69620 | 41.95388 | 38131 |
| CHI120 | -87.52985 | 41.70758 | 31467 |
| CHI095 | -87.65857 | 41.95454 | 28227 |
| CHI058 | -87.77037 | 41.87719 | 25471 |
| CHI007 | -87.68472 | 41.82356 | 24781 |
| CHI147 | -87.74908 | 41.96790 | 24681 |
bymons
byday
# testing for plot
hchart(cData5, "column", hcaes(`CAMERA ID`, y = Total, color = Total)) %>%
hc_colorAxis(stops = color_stops(n = 15, colors = c("#000000", "#21908C", "#FDE725"))) %>%
hc_add_theme(hc_theme_darkunica()) %>%
hc_title(text = paste("Top 20 Speed Camera Violations 2014-2016 ","<br>","(Interactive)")) %>%
hc_credits(enabled = TRUE, text = "Data Source: Chicago Police Department", style = list(fontSize = "13px")) %>%
hc_legend(enabled = FALSE)
highviols(2014)
highviols(2015)
highviols(2016)
highviols(2014)
highviols(2015)
highviols(2016)
One would need regional data(Parties, festivals, tourism,severe weather) to help explain/understand, why few spots have such consistently high Speed camera violations, and why certain months like April,May,June see a spike in speed camera violations.
LinkedIn:
https://www.linkedin.com/in/vivekmangipudi
Kaggle:
https://www.kaggle.com/stansilas