Dataset source : Chicago Police Department.

Sneak peak into data.

DATE CAMERA ID ADDRESS VIOLATIONS LATITUDE LONGITUDE LOCATION
2014-07-01 CHI003 4124 W FOSTER AVE 123 41.97561 -87.73167 (41.9756053, -87.7316698)
2014-07-01 CHI004 5120 N PULASKI 68 41.97433 -87.72835 (41.9743327, -87.728347)
2014-07-01 CHI005 2080 W PERSHING 68 41.82319 -87.67735 (41.8231888, -87.6773488)
2014-07-01 CHI007 3843 S WESTERN 75 41.82356 -87.68472 (41.823564, -87.6847211)
2014-07-01 CHI008 3655 W JACKSON 15 41.87707 -87.71817 (41.8770708, -87.7181683)
viols(2014)
## `geom_smooth()` using method = 'loess'

viols(2015)
## `geom_smooth()` using method = 'loess'

viols(2016)
## `geom_smooth()` using method = 'loess'

From the plots for all three years, there is clearly an uptick in speed camera violations around April-May.


Camera spots where most violations happen :2014

kable(cData3[1:10,])
CAMERA ID LONGITUDE LATITUDE Total violations
CHI029 -87.61188 41.79349 27519
CHI120 -87.52985 41.70758 27100
CHI045 -87.63352 41.66317 26915
CHI021 -87.69867 41.86041 26891
CHI095 -87.65857 41.95454 21193
CHI119 -87.65871 41.79423 19823
CHI003 -87.73167 41.97561 19654
CHI079 -87.69620 41.95388 18643
CHI058 -87.77037 41.87719 14810
CHI121 -87.65786 41.79365 14660

Camera spots where most violations happen :2015

kable(cData3[1:10,])
CAMERA ID LONGITUDE LATITUDE Total violations
CHI149 -87.74772 41.97013 94073
CHI045 -87.63352 41.66317 58415
CHI021 -87.69867 41.86041 46889
CHI003 -87.73167 41.97561 39922
CHI120 -87.52985 41.70758 34302
CHI079 -87.69620 41.95388 31855
CHI147 -87.74908 41.96790 30940
CHI095 -87.65857 41.95454 30313
CHI007 -87.68472 41.82356 27483
CHI029 -87.61188 41.79349 24750

Camera spots where most violations happen :2016

kable(cData3[1:10,])
CAMERA ID LONGITUDE LATITUDE Total violations
CHI149 -87.74772 41.97013 78230
CHI045 -87.63352 41.66317 58475
CHI003 -87.73167 41.97561 45508
CHI021 -87.69867 41.86041 44850
CHI079 -87.69620 41.95388 38131
CHI120 -87.52985 41.70758 31467
CHI095 -87.65857 41.95454 28227
CHI058 -87.77037 41.87719 25471
CHI007 -87.68472 41.82356 24781
CHI147 -87.74908 41.96790 24681

Everything in one place

bymons

Violations across the days of the week for years 2014-2016

byday

Top 20 Spots where Speed Cam violations happen 2014-2016

# testing for plot
hchart(cData5, "column", hcaes(`CAMERA ID`, y = Total, color = Total)) %>%
  hc_colorAxis(stops = color_stops(n = 15, colors = c("#000000", "#21908C", "#FDE725"))) %>%
  hc_add_theme(hc_theme_darkunica()) %>%
  hc_title(text = paste("Top 20 Speed Camera Violations 2014-2016 ","<br>","(Interactive)")) %>%
  hc_credits(enabled = TRUE, text = "Data Source:  Chicago Police Department", style = list(fontSize = "13px")) %>%
  hc_legend(enabled = FALSE)

Interactive Maps : Part 1

highviols(2014)
highviols(2015)
highviols(2016)

Maps : Part 2

highviols(2014)
highviols(2015)
highviols(2016)

One would need regional data(Parties, festivals, tourism,severe weather) to help explain/understand, why few spots have such consistently high Speed camera violations, and why certain months like April,May,June see a spike in speed camera violations.

LinkedIn:
https://www.linkedin.com/in/vivekmangipudi
Kaggle:
https://www.kaggle.com/stansilas