dieta <-read.table("dieta.csv", sep = ";",
head = TRUE )
dieta$tipoDiet <- factor(dieta$tipoDiet)
dieta$edad <- factor(dieta$edad)
shapiro.test( dieta$peso0[dieta$edad == 1])#p-value = 0.1022
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 1]
## W = 0.853, p-value = 0.1022
shapiro.test( dieta$peso0[dieta$edad == 2])#p-value = 0.06038
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 2]
## W = 0.83071, p-value = 0.06038
shapiro.test( dieta$peso0[dieta$edad == 3])#p-value = 0.4849
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 3]
## W = 0.92652, p-value = 0.4849
fligner.test( peso0 ~ edad, data = dieta) #p-value = 0.6562
##
## Fligner-Killeen test of homogeneity of variances
##
## data: peso0 by edad
## Fligner-Killeen:med chi-squared = 0.84251, df = 2, p-value =
## 0.6562
fitdieta <- aov( peso0 ~ edad, data = dieta )
summary(fitdieta)
## Df Sum Sq Mean Sq F value Pr(>F)
## edad 2 2544 1272.0 13.46 0.000173 ***
## Residuals 21 1985 94.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pairwise.t.test( dieta$peso0, dieta$edad, p.adj = "holm", paired = TRUE)
##
## Pairwise comparisons using paired t tests
##
## data: dieta$peso0 and dieta$edad
##
## 1 2
## 2 0.1584 -
## 3 0.0004 0.0137
##
## P value adjustment method: holm
shapiro.test( dieta$peso0[dieta$edad == 1])#p-value = 0.1022
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 1]
## W = 0.853, p-value = 0.1022
shapiro.test( dieta$peso0[dieta$edad == 2])#p-value = 0.06038
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 2]
## W = 0.83071, p-value = 0.06038
shapiro.test( dieta$peso0[dieta$edad == 3])#p-value = 0.4849
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 3]
## W = 0.92652, p-value = 0.4849
shapiro.test( dieta$peso0[dieta$tipoDiet == 1])#p-value = 0.9942
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$tipoDiet == 1]
## W = 0.98948, p-value = 0.9942
shapiro.test( dieta$peso0[dieta$tipoDiet == 2])#p-value = 0.9404
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$tipoDiet == 2]
## W = 0.97599, p-value = 0.9404
shapiro.test( dieta$peso0[dieta$tipoDiet == 3])#p-value = 0.4412
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$tipoDiet == 3]
## W = 0.92138, p-value = 0.4412
fligner.test( peso0 ~ edad, data = dieta) #p-value = 0.6562
##
## Fligner-Killeen test of homogeneity of variances
##
## data: peso0 by edad
## Fligner-Killeen:med chi-squared = 0.84251, df = 2, p-value =
## 0.6562
fligner.test( peso0 ~ tipoDiet, data = dieta) #p-value = 0.1445
##
## Fligner-Killeen test of homogeneity of variances
##
## data: peso0 by tipoDiet
## Fligner-Killeen:med chi-squared = 3.8689, df = 2, p-value = 0.1445
table(dieta$edad)
##
## 1 2 3
## 8 8 8
table(dieta$tipoDiet)
##
## 1 2 3
## 8 8 8
fitdieta2 <- aov( peso0 ~ edad * tipoDiet, data = dieta )
summary(fitdieta2)
## Df Sum Sq Mean Sq F value Pr(>F)
## edad 2 2544.1 1272.0 14.026 0.000368 ***
## tipoDiet 2 151.6 75.8 0.836 0.452712
## edad:tipoDiet 4 473.3 118.3 1.305 0.312775
## Residuals 15 1360.4 90.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot( dieta$edad, dieta$tipoDiet, dieta$peso0,
ylim = c( 10, 200 ),
col = c( "red", "blue" ),
lty = c( 1, 12 ),
lwd = 3,
ylab = "peso antes",
xlab = "edad", trace.label = "genero" )
##D/ Comprueba si la media de los pesos difieren dependiendo del momento de la dieta que se esté.Para esto último haremos el ANOVA de medidas repetidas
library( reshape2 )
dietaRe <- melt( dieta, id = c( "id", "edad", "tipoDiet" ),
measure = c( "peso0", "peso1", "peso2" ),
variable.name = "MOM.DIETA",
value.name = "PESOS" )
head( dietaRe )
## id edad tipoDiet MOM.DIETA PESOS
## 1 1 3 1 peso0 122.01756
## 2 2 3 1 peso0 140.86780
## 3 3 2 3 peso0 110.52651
## 4 4 2 3 peso0 120.74844
## 5 5 1 1 peso0 82.73085
## 6 6 2 1 peso0 118.06524
shapiro.test( dietaRe$PESOS[dietaRe$MOM.DIETA == "peso0"])#p-value = 0.9144
##
## Shapiro-Wilk normality test
##
## data: dietaRe$PESOS[dietaRe$MOM.DIETA == "peso0"]
## W = 0.98105, p-value = 0.9144
shapiro.test( dietaRe$PESOS[dietaRe$MOM.DIETA == "peso1"])#p-value = 0.7012
##
## Shapiro-Wilk normality test
##
## data: dietaRe$PESOS[dietaRe$MOM.DIETA == "peso1"]
## W = 0.97138, p-value = 0.7012
shapiro.test( dietaRe$PESOS[dietaRe$MOM.DIETA == "peso2"])#p-value = 0.4417
##
## Shapiro-Wilk normality test
##
## data: dietaRe$PESOS[dietaRe$MOM.DIETA == "peso2"]
## W = 0.96016, p-value = 0.4417
library(ez)
options( contrasts = c( "contr.sum", "contr.poly" ) )
ezANOVA( data = dietaRe, dv = PESOS,
wid = id, within = MOM.DIETA,
type = 3 )
## Warning: Converting "id" to factor for ANOVA.
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 2 MOM.DIETA 2 46 9.007468 0.0004999883 * 0.2143998
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 MOM.DIETA 0.9348576 0.4766505
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF]
## 2 MOM.DIETA 0.9388416 0.0006806327 * 1.019405 0.0004999883
## p[HF]<.05
## 2 *
william <-read.table("william.csv", sep = ";",
head = TRUE )
shapiro.test( william$salario )
##
## Shapiro-Wilk normality test
##
## data: william$salario
## W = 0.93541, p-value = 0.3281
cor.test(william$salario,william$ausencias)
##
## Pearson's product-moment correlation
##
## data: william$salario and william$ausencias
## t = -7.4737, df = 13, p-value = 4.672e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9668476 -0.7211085
## sample estimates:
## cor
## -0.9006674
modelo <- lm(ausencias ~ salario, data = william)
summary(modelo)
##
## Call:
## lm(formula = ausencias ~ salario, data = william)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.516 -3.053 1.428 2.961 5.475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.6002 3.0789 15.460 9.50e-10 ***
## salario -3.0094 0.4027 -7.474 4.67e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.294 on 13 degrees of freedom
## Multiple R-squared: 0.8112, Adjusted R-squared: 0.7967
## F-statistic: 55.86 on 1 and 13 DF, p-value: 4.672e-06
anova(modelo)
## Analysis of Variance Table
##
## Response: ausencias
## Df Sum Sq Mean Sq F value Pr(>F)
## salario 1 1030.01 1030.01 55.857 4.672e-06 ***
## Residuals 13 239.72 18.44
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
william$fitted.modelo <- fitted( modelo )
william$residuals.modelo <- residuals( modelo )
william$rstudent.modelo <- rstudent( modelo )
shapiro.test(william$rstudent.modelo)
##
## Shapiro-Wilk normality test
##
## data: william$rstudent.modelo
## W = 0.91538, p-value = 0.1637
library(lmtest)
## Warning: package 'lmtest' was built under R version 3.3.3
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
bptest(modelo)#p-value=0,467
##
## studentized Breusch-Pagan test
##
## data: modelo
## BP = 0.52916, df = 1, p-value = 0.467
dwtest(ausencias ~ salario, alternative = "two.sided", data = william)#p-value = 0.3763
##
## Durbin-Watson test
##
## data: ausencias ~ salario
## DW = 2.452, p-value = 0.3763
## alternative hypothesis: true autocorrelation is not 0