Statistical Methods for Reliability Data

Chapter 10 - Planning Life Tests

W. Q. Meeker, L. A. Escobar, and J. K. Freels

07 May 2017

CHAPTER OVERVIEW

This chapter explains

10.1 - Introduction

10.1.1 - Basic Ideas

Every test event must have clearly defined goals

Additional Considerations

Example 10.1 - Insulation Life Test Plan

Desired conclusion

Test constraints

Planning Values

\[ \begin{aligned} t_{0.12}^{\Box}&=500\;\;\text{hours}\\\\ t_{0.20}^{\Box}&=1000\;\text{hours}\\\\ p_{c}^{\Box}&=0.2 \end{aligned} \]

10.1.2 - Simulation of a Proposed Test Plan

Steps often used to evaluate a reliability test plan

  1. Use the chosen model & planning values to simulate data from the proposed life test
  2. Analyze the data, perhaps fitting more than one distribution
  3. Assess estimate precision (typically via confidence intervals)
  4. Simulate and fit distributions to many samples to assess sampling variations. This assessment does not depend on large sample approximations
  5. Repeat this simulation-evaluation process with different sample sizes to gauge sample size and test length requirements to achieve the desired precision
  6. Repeat steps (1) - (5) with different planning values to gauge how sensitive the results may be to errors in our "expert knowledge"

Figures 10.2 - 10.4

10.1.3 - Uncertainty in Planning Values

10.2 - Approximate Variance of ML Estimators

10.2.1 - Large-Sample Approximations

Motivation

10.2.2 - Basic Large-Sample Approximations

Background

\[ \mathbf{\widehat{\underline{\theta}}}_{_{MLE}}\sim MVN(\mathbf{\underline{\theta}}, \Sigma_{\mathbf{\widehat{\underline{\theta}}}}) \]

and

\[ \Sigma_{\mathbf{\widehat{\underline{\theta}}}}=\mathcal{I}^{-1}_{\underline{\theta}}=E\left[-\frac{\partial^2\mathcal{L}(\underline{\theta}|\underline{t})}{\partial\underline{\theta}\partial\underline{\theta}^T}\right]^{-1}=\sum_{i=1}^n E\left[-\frac{\partial^2\mathcal{L}_i(\underline{\theta}|\underline{x})}{\partial\underline{\theta}\partial\underline{\theta}^T}\right]^{-1} \]

Results of interest in reliability tests

where \(\widehat{se}_{g(\mathbf{\underline{\widehat{\theta}}})}=\sqrt{\widehat{Var}\left[\widehat{g}(\mathbf{\underline{\widehat{\theta}}})\right]}\)

\[ \widehat{Var}\left[\widehat{g}(\mathbf{\underline{\widehat{\theta}}})\right]=\left[\frac{\partial g(\mathbf{\underline{\theta}})}{\partial \mathbf{\underline{\theta}}}\right]^T\Sigma_{\mathbf{\underline{\widehat{\theta}}}}\left[\frac{\partial g(\mathbf{\underline{\theta}})}{\partial \mathbf{\underline{\theta}}}\right] \]

\[ \log[g(\mathbf{\underline{\widehat{\theta}}})]\sim NOR\left(\log[g(\mathbf{\underline{\theta}})],\widehat{se}_{\log[\widehat{g}(\mathbf{\underline{\theta}})]}\right) \]

and

\[ \widehat{Var}\left[\log(\widehat{g}(\mathbf{\underline{\theta}}))\right]=\left(\frac{1}{g(\mathbf{\underline{\theta}})}\right)^2\widehat{Var}[\widehat{g}(\mathbf{\underline{\theta}})] \]

\[ \widehat{se}_{\widehat{g}(\mathbf{\underline{\theta}})}=\frac{1}{\sqrt{n}}\sqrt{V_{\widehat{g}}}\;\;\text{and}\;\;\widehat{se}_{\widehat{g}(\mathbf{\log[\underline{\theta}]})}=\frac{1}{\sqrt{n}}\sqrt{V_{\log(\widehat{g})}} \]

\[ V_{\widehat{g}}=n\widehat{Var}_{\widehat{g}(\mathbf{\underline{\theta}})}\;\;\text{and}\;\;V_{\log(\widehat{g})}=n\widehat{Var}_{\widehat{g}(\mathbf{\log[\underline{\theta}]})} \]

10.3 - Sample Size for Unrestricted Functions

Sample Size for Unrestricted Functions

\[ \begin{aligned} \left[\underline{g},\overline{g}\right]&=\widehat{g}\pm z_{(1-\alpha/2)}(1/\sqrt{n})\sqrt{\widehat{V}_{\widehat{g}}}\\\\ &=\widehat{g}\pm D \end{aligned} \]

\[ n=\frac{z^2_{(1-\alpha/2)}V^{\Box}_{\widehat{g}}}{D^2_T} \]

Example 10.3

Background

From elementary statistics

\[ n=\frac{z^2_{(1-\alpha/2)}V^{\Box}_{\widehat{\mu}}}{D_T^2}=\frac{(1.96)^2(200)^2}{30^2}\approx 171 \mbox{ samples} \]

10.4 - Sample Size for Positive Functions

Sample Size for Positive Functions

\[ \begin{aligned} \left[\underline{\log[g]},\overline{\log[g]}\right]&=\log[\widehat{g}]\pm (1/\sqrt{n})z_{(1-\alpha/2)}(1/\sqrt{n})\sqrt{\widehat{V}_{\log[\widehat{g}]}}\\\\ &=\log[\widehat{g}]\pm \log[R] \end{aligned} \]

\[ n=\frac{z^2_{(1-\alpha/2)}V^{\Box}_{\log[\widehat{g}]}}{(\log[R_T])^2} \]

Example 10.4

Background

\[ n=\frac{z^2_{(1-\alpha/2)}V^{\Box}_{\log[\widehat{\theta}]}}{(\log[R_T])^2}=\frac{(1.96)^2(2.5415)}{(\log[1.5])^2}\approx 60 \mbox{ samples} \]

Proof of \(E\left[-\frac{\partial^2\mathscr{L}(\theta)}{\partial\theta^2}\right]\)

\[E\left[-\frac{\partial^2\mathscr{L}(\theta)}{\partial\theta^2}\right] = \frac{1-\exp\left(-\frac{t_c}{\theta}\right)}{n\theta^2}\]

\[ \mathscr{L}(\theta)=\sum_{i=1}^n f(t_i|\theta)^{\delta_i}\times S(t_i|\theta)^{1-\delta_i} \quad i = 1,\cdots,n \]

\[ \delta_i= \begin{cases} 1 \mbox{ if $t_i$ is a failure time}\\ 0 \mbox{ if $t_i$ is a right-censored observation} \end{cases} \]

\[ \mathscr{L}(\theta)=\sum_{i=1}^n \left(\frac{1}{\theta}\exp\left[-\frac{t_i}{\theta}\right]\right)^{\delta_i}\times\left(\exp\left[-\frac{t_i}{\theta}\right]\right)^{1-\delta_i} \quad i = 1,\cdots,n \]

\[ \begin{aligned} \mathcal{L}(\theta)=&\sum_{i=1}^n {\delta_i}\left(\log\left[\frac{1}{\theta}\right]-\frac{t_i}{\theta}\right) + (1-\delta_i)\left(-\frac{t_i}{\theta}\right) \quad i = 1,\cdots,n\\\\ =&\sum_{i=1}^n -\delta_i\log[\theta]-\delta_i\frac{t_i}{\theta} -\frac{t_i}{\theta} +\delta_i\frac{t_i}{\theta} \quad i = 1,\cdots,n\\\\ =&\sum_{i=1}^n -\delta_i\log[\theta]-\frac{t_i}{\theta} \quad i = 1,\cdots,n\\\\ =& -\log[\theta]\sum_{i=1}^n \delta_i- \frac{1}{\theta}\sum_{i=1}^nt_i \quad i = 1,\cdots,n\\\\ =& -r\log[\theta] - \frac{TTT}{\theta} \end{aligned} \]

\[ \begin{aligned} \mathscr{L} &=-r\log[\theta] - \frac{TTT}{\theta}\\\\ \frac{\partial\mathscr{L}}{\partial\theta} &=-\frac{r}{\theta}+\frac{TTT}{\theta^2}\\\\ \frac{\partial^2\mathscr{L}}{\partial\theta^2} &= \frac{r}{\theta^2}-\frac{TTT}{\theta^3}\\\\ -\frac{\partial^2\mathscr{L}}{\partial\theta^2} &= -\frac{r}{\theta^2}+\frac{TTT}{\theta^3} \end{aligned} \]

\[ \begin{aligned} E\left[-\frac{\partial^2\mathscr{L}}{\partial\theta^2}\right] =\;& E\left[-\frac{r}{\theta^2}+\frac{TTT}{\theta^3}\right]\\\\ =\;& E\left[-\frac{r}{\theta^2}\right]+E\left[\frac{TTT}{\theta^3}\right]\\\\ =\;& -\frac{E[r]}{\theta^2}+\frac{E[TTT]}{\theta^3} \end{aligned} \]

\[ \begin{aligned} E[r] &= n \times F(t_c)\\\\ &= n\left(1-\exp\left[-\frac{t_c}{\theta}\right]\right) \end{aligned} \]

\[ E[TTT] = E\left[\sum_{i=1}^r t_i|r \right] + (n-r)t_c \]

10.5 - Sample Sizes for Log-Location-Scale Distributions with Censoring

10.5.1 - Large-Sample Approximation for \(\Sigma_{(\mu,\sigma)}\)

In this section

\[ \Sigma_{(\widehat{\mu},\widehat{\sigma})}=\left[\begin{array}{cc} \widehat{Var}[\widehat{\mu}] & \widehat{Cov}[\widehat{\mu},\widehat{\sigma}]\\ \widehat{Cov}[\widehat{\mu},\widehat{\sigma}] & \widehat{Var}[\widehat{\mu}]\end{array}\right]=\frac{1}{n}\left[\begin{array}{cc} V_{\widehat{\mu}} & V_{(\widehat{\mu},\widehat{\sigma})}\\ V_{(\widehat{\mu},\widehat{\sigma})} & V_{\widehat{\sigma}} \end{array}\right]=\mathcal{I}^{-1}_{(\widehat{\mu},\widehat{\sigma})} \]

\[ \zeta_c=\frac{t_c-\mu}{\sigma} \]

\[ \zeta_c=\frac{\log[t_c]-\mu}{\sigma} \]

So, how do we use Table C.20?

\[ \zeta_c^{\Box}=\frac{\log[t_c]-\mu^{\Box}}{\sigma^{\Box}} \]

So, what are the values displayed in Table C.20?

Example 10.5

Background

\[ R_{_{T}}=1.5=\frac{\overset{\sim}{g}=1.5\widehat{g}}{\widehat{g}}=\frac{\widehat{g}=1.5\underset{\sim}{g}}{\underset{\sim}{g}}=\sqrt{\frac{1.5\widehat{g}}{\frac{\widehat{g}}{1.5}}}=\sqrt{(1.5)^2} \]

\[ n=\frac{z^2_{(1-\alpha/2)}V^{\Box}_{\log[\widehat{\beta}]}}{(\log[R_T])^2}=\frac{(1.96)^2 V^{\Box}_{\log[\widehat{\beta}]}}{(\log[1.5])^2} \]

\[ V^{\Box}_{\log[\widehat{\beta}]}=V^{\Box}_{\log[\widehat{\sigma}]}=\frac{1}{(\sigma^{\Box})^2}V^{\Box}_{\widehat{\sigma}} \]

\[ \zeta^{\Box}_c = \frac{t_c - \mu^{\Box}}{\sigma^{\Box}} =\frac{1000-8.774}{1.244} = -1.5 \]

$f11
[1] 0.1999893

$f12
[1] -0.3112703

$f22
[1] 0.6954854

$matrix
           f_i1       f_i2
f_1j  0.1999893 -0.3112703
f_2j -0.3112703  0.6954854

\[ \begin{aligned} \frac{\sigma^2}{n}\mathcal{I}_{(\mu,\sigma)}&=\left[\begin{array}{cc}f_{11}&f_{12}\\f_{12}&f_{22}\end{array}\right]\\\\ \mathcal{I}_{(\mu,\sigma)}&=\frac{n}{\sigma^2}\left[\begin{array}{cc}f_{11}&f_{12}\\f_{12}&f_{22}\end{array}\right]\\\\ \mathcal{I}^{-1}_{(\mu,\sigma)}&=\frac{\sigma^2}{n}\left[\begin{array}{cc}f_{11}&f_{12}\\f_{12}&f_{22}\end{array}\right]^{-1} \end{aligned} \]

\[ \begin{aligned} \mathcal{I}^{-1}_{(\widehat{\mu},\widehat{\sigma})}=\frac{1}{n}\left[\begin{array}{cc}V_{\widehat{\mu}}&V_{\widehat{\mu},\widehat{\sigma}}\\V_{\widehat{\mu},\widehat{\sigma}}&V_{\widehat{\sigma}}\end{array}\right]&=\frac{\sigma^2}{n}\left[\begin{array}{cc}f_{11}&f_{12}\\f_{12}&f_{22}\end{array}\right]^{-1}\\\\ \frac{1}{\sigma^2}\left[\begin{array}{cc}V_{\widehat{\mu}}&V_{\widehat{\mu},\widehat{\sigma}}\\V_{\widehat{\mu},\widehat{\sigma}}&V_{\widehat{\sigma}}\end{array}\right]&=\left[\begin{array}{cc}f_{11}&f_{12}\\f_{12}&f_{22}\end{array}\right]^{-1} \end{aligned} \]

          f_1j     f_2j
f_i1 16.480523 7.375995
f_i2  7.375995 4.739033

\[ n=\frac{(1.96)^2(4.74)}{[\log(1.5)]^2}\approx 111\;\text{samples} \]

$z [1] -1.5

$phib [1] 0.0668072

$f11 [1] 0.2790593

$f22 [1] 0.805458

$f12 [1] -0.4478958

$v11 [1] 33.33856

$v22 [1] 11.55049

$v12 [1] 18.53877

$rho [1] 0.944729

$vmugsigma [1] 3.583468

$vsigmagmu [1] 1.24153

$z [1] -1.5

$phib [1] 0.1999893

$f11 [1] 0.1999893

$f22 [1] 0.6954854

$f12 [1] -0.3112703

$v11 [1] 16.48052

$v22 [1] 4.739033

$v12 [1] 7.375995

$rho [1] 0.8346229

$vmugsigma [1] 5.000268

$vsigmagmu [1] 1.437845

10.5.3 - Large-Sample Estimate of \(\widehat{Var}[g(\widehat{\mu},\widehat{\sigma})]\)

Remember the Delta Method

\[ \begin{aligned} V_{\widehat{g}}&=\left(\frac{\partial g}{\partial\mu}\right)^2 V_{\widehat{\mu}}+\left(\frac{\partial g} {\partial\sigma}\right)^2 V_{\widehat{\sigma}}+\left(\frac{\partial g}{\partial\mu}\right)\left(\frac{\partial g}{\partial\sigma}\right)V_{(\widehat{\mu},\widehat{\sigma})}\\\\ V_{\log[\widehat{g}]}&=\left(\frac{1}{g}\right)^2 V_{\widehat{g}}, \;\;\;g>0\\\\ V_{\exp[\widehat{g}]}&=g^2V_{\widehat{g}} \end{aligned} \]

10.5.4 - Sample size to Estimate \(\log[t_p;\mu,\sigma]\)

\[ \log(t_p|\mu,\sigma)=\mu+\Phi^{-1}_{(\cdot)}(p)\sigma \]

\[ V_{\log[t_p]}=V_{\widehat{\mu}}+\left[\Phi^{-1}_{(\cdot)}(p)\right]^2 V_{\widehat{\sigma}}+2\Phi^{-1}_{(\cdot)}(p) V_{(\widehat{\mu},\widehat{\sigma})} \]

\[ n=\frac{z_{(1-\alpha/2)}V^{\Box}_{\log[t_p]}}{(\log[R_T])^2} \]

Figures 10.5 - 10.6

10.5.5 - Sample Size to Estimate \(h(\log[t_e\;\mu,\sigma])\)

For log-location scale distributions

\[ h(t_e|\mu,\sigma)=\frac{\phi(\zeta_e)}{t_e\sigma[1-\Phi(\zeta_e)]} \]

After taking derivatives, we have

\[ V_{\log[\widehat{h}]}=\frac{1}{h^2}V_{\widehat{h}}=\left[\left(\frac{\partial h}{\partial\mu} \right)^2 V_{\widehat{\mu}}+\left(\frac{\partial h}{\partial\sigma}\right)^2 V_{\widehat{\sigma}} +2\left(\frac{\partial h}{\partial\mu}\right)\left(\frac{\partial h}{\partial\sigma}\right) V_{(\widehat{\mu},\widehat{\sigma})}\right] \]

and

\[ n=\frac{z_{(1-\alpha/2)}V^{\Box}_{\log[\widehat{h}]}}{(\log[R_T])^2} \]

Figures 10.8 - 10.9

Example 10.10

Recall the electrical insulation test discussed in Examples 10.1, 10.5, and 10.7

Suppose that we now wish to plan a life test to compute a \(95\%\) CI for \(h(1000)\) wherein the endpoints are approximately \(50\%\) away from \(\widehat{h}(1000)_{_{MLE}}\)

In Example 10.1 we noted

Since \(t_e=t_c=1000\;\text{hours}\rightarrow p_e=p^{\Box}_c=0.2\)

Observing where the \(p_e=0.2\) and \(p^{\Box}_c=0.2\) lines intersect in Figure 10.9, we see that

\[ V_{\log[\widehat{h}(1000)]}\approx 8.2 \]

and

\[ n=\frac{z_{(1-\alpha/2)}V^{\Box}_{\log[\widehat{h}(1000)]}}{(\log[R_T])^2}=\frac{(1.96)^2(8.2)}{(\log[1.5])^2}\approx 191 \]

10.6 - Test Plans to Demonstrate Conformance with a Reliability Standard

10.6.1 - Reliability Demonstration Plans

It's often necessary to plan tests to demonstrate the reliability performance of a product

Objective: Given a performance specification and desired confidence level, want to specify

To demonstrate if the measure of interest exceeds the specification with the \(100(1-\alpha)\%\) confidence

Example: For \(t_e=8760\;\text{hours (1 year)}\) want to demonstrate with \(100(1-\alpha)\%\) confidence that

\[ \underline{t}_{.01}>t_e\iff \overline{F}(t_e)<.01 \]

Often a reliability test will conclude without observing any failures

What does this mean?

10.6.2 - Weibull \(\min(n)\) reliability demonstration plans w/ given \(\beta\)

10.6.3 - Extensions for Other Reliability Demonstration Test Plans

The \(f_{ij}\) elements in Appendix C.20 are the elements of the scaled Fisher information matrix, that is

\[ \left[\begin{array}{cc}f_{11}&f_{12}\\f_{21}&f_{22}\end{array}\right]= \sigma^{2} \left[\begin{array}{cc} E\left\{-\frac{\partial^{2}\mathscr{L}(\mu,\sigma)}{\partial\mu^{2}}\right\}& E\left\{-\frac{\partial^{2}\mathscr{L}(\mu,\sigma)}{\partial \mu \partial \sigma}\right\}\\ E\left\{-\frac{\partial^{2}\mathscr{L}(\mu,\sigma)}{\partial \mu \partial \sigma}\right\}& E\left\{-\frac{\partial^{2}\mathscr{L}(\mu,\sigma)}{\partial\sigma^{2}}\right\} \end{array}\right]=\left[\begin{array}{cc}.96841&-0.11490\\-0.11490&1.56779\end{array}\right] \]

The variance terms in Table C.20 are then found from

\[ \begin{aligned} \frac{1}{\sigma^{2}}\left[\begin{array}{cc}V_{\bar{\mu}}&V_{(\bar{\mu},\bar{\sigma})}\\V_{(\bar{\mu},\bar{\sigma})}&V_{\bar{\sigma}}\end{array}\right]&=\frac{n}{\sigma^{2}}\left[\begin{array}{cc}Avar(\bar{\mu})&Acov(\bar{\mu},\bar{\sigma})\\Acov(\bar{\mu},\bar{\sigma})&Avar(\bar{\sigma})\end{array}\right]=\left[\begin{array}{cc}f_{11}&f_{12}\\f_{12}&f_{22}\end{array}\right]^{-1}\\\\ &=\frac{1}{f_{11}f_{22}-f_{12}^{2}}\left[\begin{array}{cc}f_{22}&-f_{12}\\-f_{12}&f_{11}\end{array}\right]\\\\ &=\frac{1}{0.96841\times 1.56779-(-0.11490)^{2}}\left[\begin{array}{cc}0.96841&0.11490\\0.11490&1.56779\end{array}\right]\\\\ &=\left[\begin{array}{cc}1.04168&0.07634\\ 0.7634&0.64344\end{array}\right] \end{aligned} \]

The asymptotic correlation is then computed as

\[ \rho(\bar{\mu},\bar{\sigma}) =\frac{V_{(\bar{\mu},\bar{\sigma})}}{\sqrt{V_{\bar{\mu}}V_{\bar{\sigma}}}} =\frac{0.07634}{\sqrt{1.04168\times 0.64344}}=0.09325 \]

Similarly, the scaled asymptotic variances for either a known \(\mu\) or a known \(\sigma\) are

\[ \begin{aligned} \frac{n}{\sigma^{2}}Avar(\bar{\mu}|\sigma)&=\frac{1}{\sigma^{2}}V_{\bar{\mu}|\sigma}=\left[f_{11}\right]^{-1}=\left[0.96841\right]^{-1}=1.03262\\ \frac{n}{\sigma^{2}}Avar(\bar{\sigma}|\mu)&=\frac{1}{\sigma^{2}}V_{\bar{\sigma}|\mu}=\left[f_{22}\right]^{-1}=\left[1.56779\right]^{-1}=0.63784 \end{aligned} \]

10.7 - Some Extensions

10.7.1 - Failure (Type II) Censoring

10.7.2 - Variance factors for location-scale parameters and multiple censoring

10.7.3 - Test planning for distributions that are not log-location scale