To develop the wine rating model, we will use data donated to the UCI Machine Learning Data Repository (http://archive.ics.uci.edu/ml) by P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. The data include examples of red and white Vinho Verde wines from Portugal—one of the world’s leading wine-producing countries. Because the factors that contribute to a highly rated wine may differ between the red and white varieties, for this analysis we will examine only the more popular white wines.
wine <- read.csv("http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml10/whitewines.csv")
examine the wine data
str(wine)
'data.frame': 4898 obs. of 12 variables:
$ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...
$ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38 0.16 0.37 ...
$ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28 0.3 0.33 ...
$ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...
$ chlorides : num 0.039 0.044 0.034 0.036 0.041 0.037 0.049 0.043 0.043 0.027 ...
$ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...
$ total.sulfur.dioxide: num 62 113 123 74 119 95 152 67 90 130 ...
$ density : num 0.993 0.999 0.995 0.991 0.993 ...
$ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21 2.88 3.28 ...
$ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47 0.47 0.39 ...
$ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...
$ quality : int 5 6 6 4 6 6 6 6 6 7 ...
the distribution of quality ratings
hist(wine$quality)
summary statistics of the wine data
summary(wine)
fixed.acidity volatile.acidity citric.acid
Min. : 3.800 Min. :0.0800 Min. :0.0000
1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2700
Median : 6.800 Median :0.2600 Median :0.3200
Mean : 6.855 Mean :0.2782 Mean :0.3342
3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3900
Max. :14.200 Max. :1.1000 Max. :1.6600
residual.sugar chlorides free.sulfur.dioxide
Min. : 0.600 Min. :0.00900 Min. : 2.00
1st Qu.: 1.700 1st Qu.:0.03600 1st Qu.: 23.00
Median : 5.200 Median :0.04300 Median : 34.00
Mean : 6.391 Mean :0.04577 Mean : 35.31
3rd Qu.: 9.900 3rd Qu.:0.05000 3rd Qu.: 46.00
Max. :65.800 Max. :0.34600 Max. :289.00
total.sulfur.dioxide density pH
Min. : 9.0 Min. :0.9871 Min. :2.720
1st Qu.:108.0 1st Qu.:0.9917 1st Qu.:3.090
Median :134.0 Median :0.9937 Median :3.180
Mean :138.4 Mean :0.9940 Mean :3.188
3rd Qu.:167.0 3rd Qu.:0.9961 3rd Qu.:3.280
Max. :440.0 Max. :1.0390 Max. :3.820
sulphates alcohol quality
Min. :0.2200 Min. : 8.00 Min. :3.000
1st Qu.:0.4100 1st Qu.: 9.50 1st Qu.:5.000
Median :0.4700 Median :10.40 Median :6.000
Mean :0.4898 Mean :10.51 Mean :5.878
3rd Qu.:0.5500 3rd Qu.:11.40 3rd Qu.:6.000
Max. :1.0800 Max. :14.20 Max. :9.000
Set train and test data
wine_train <- wine[1:3750, ]
wine_test <- wine[3751:4898, ]
regression tree using rpart and traning a tree model on the data
library(rpart)
m.rpart <- rpart(quality ~ ., data = wine_train)
get basic information about the tree
m.rpart
n= 3750
node), split, n, deviance, yval
* denotes terminal node
1) root 3750 2945.53200 5.870933
2) alcohol< 10.85 2372 1418.86100 5.604975
4) volatile.acidity>=0.2275 1611 821.30730 5.432030
8) volatile.acidity>=0.3025 688 278.97670 5.255814 *
9) volatile.acidity< 0.3025 923 505.04230 5.563380 *
5) volatile.acidity< 0.2275 761 447.36400 5.971091 *
3) alcohol>=10.85 1378 1070.08200 6.328737
6) free.sulfur.dioxide< 10.5 84 95.55952 5.369048 *
7) free.sulfur.dioxide>=10.5 1294 892.13600 6.391036
14) alcohol< 11.76667 629 430.11130 6.173291
28) volatile.acidity>=0.465 11 10.72727 4.545455 *
29) volatile.acidity< 0.465 618 389.71680 6.202265 *
15) alcohol>=11.76667 665 403.99400 6.596992 *
Because alcohol was used first in the tree, it is the single most important predictor of wine quality.Interpretation: for instance, in 3750 root, 2372 with alcohol < 10.85, and 1378 with > 10.85.
get more detailed information about the tree
summary(m.rpart)
Call:
rpart(formula = quality ~ ., data = wine_train)
n= 3750
CP nsplit rel error xerror xstd
1 0.15501053 0 1.0000000 1.0003632 0.02445718
2 0.05098911 1 0.8449895 0.8499376 0.02348303
3 0.02796998 2 0.7940004 0.8051823 0.02291590
4 0.01970128 3 0.7660304 0.7864921 0.02202804
5 0.01265926 4 0.7463291 0.7601014 0.02092604
6 0.01007193 5 0.7336698 0.7521970 0.02075419
7 0.01000000 6 0.7235979 0.7434783 0.02056119
Variable importance
alcohol density
34 21
volatile.acidity chlorides
15 11
total.sulfur.dioxide free.sulfur.dioxide
7 6
residual.sugar sulphates
3 1
citric.acid
1
Node number 1: 3750 observations, complexity param=0.1550105
mean=5.870933, MSE=0.7854751
left son=2 (2372 obs) right son=3 (1378 obs)
Primary splits:
alcohol < 10.85 to the left, improve=0.15501050, (0 missing)
density < 0.992035 to the right, improve=0.10915940, (0 missing)
chlorides < 0.0395 to the right, improve=0.07682258, (0 missing)
total.sulfur.dioxide < 158.5 to the right, improve=0.04089663, (0 missing)
citric.acid < 0.235 to the left, improve=0.03636458, (0 missing)
Surrogate splits:
density < 0.991995 to the right, agree=0.869, adj=0.644, (0 split)
chlorides < 0.0375 to the right, agree=0.757, adj=0.339, (0 split)
total.sulfur.dioxide < 103.5 to the right, agree=0.690, adj=0.155, (0 split)
residual.sugar < 5.375 to the right, agree=0.667, adj=0.094, (0 split)
sulphates < 0.345 to the right, agree=0.647, adj=0.038, (0 split)
Node number 2: 2372 observations, complexity param=0.05098911
mean=5.604975, MSE=0.5981709
left son=4 (1611 obs) right son=5 (761 obs)
Primary splits:
volatile.acidity < 0.2275 to the right, improve=0.10585250, (0 missing)
free.sulfur.dioxide < 13.5 to the left, improve=0.03390500, (0 missing)
citric.acid < 0.235 to the left, improve=0.03204075, (0 missing)
alcohol < 10.11667 to the left, improve=0.03136524, (0 missing)
chlorides < 0.0585 to the right, improve=0.01633599, (0 missing)
Surrogate splits:
pH < 3.485 to the left, agree=0.694, adj=0.047, (0 split)
sulphates < 0.755 to the left, agree=0.685, adj=0.020, (0 split)
total.sulfur.dioxide < 105.5 to the right, agree=0.683, adj=0.011, (0 split)
residual.sugar < 0.75 to the right, agree=0.681, adj=0.007, (0 split)
chlorides < 0.0285 to the right, agree=0.680, adj=0.003, (0 split)
Node number 3: 1378 observations, complexity param=0.02796998
mean=6.328737, MSE=0.7765472
left son=6 (84 obs) right son=7 (1294 obs)
Primary splits:
free.sulfur.dioxide < 10.5 to the left, improve=0.07699080, (0 missing)
alcohol < 11.76667 to the left, improve=0.06210660, (0 missing)
total.sulfur.dioxide < 67.5 to the left, improve=0.04438619, (0 missing)
residual.sugar < 1.375 to the left, improve=0.02905351, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02613259, (0 missing)
Surrogate splits:
total.sulfur.dioxide < 53.5 to the left, agree=0.952, adj=0.214, (0 split)
volatile.acidity < 0.875 to the right, agree=0.940, adj=0.024, (0 split)
Node number 4: 1611 observations, complexity param=0.01265926
mean=5.43203, MSE=0.5098121
left son=8 (688 obs) right son=9 (923 obs)
Primary splits:
volatile.acidity < 0.3025 to the right, improve=0.04540111, (0 missing)
alcohol < 10.05 to the left, improve=0.03874403, (0 missing)
free.sulfur.dioxide < 13.5 to the left, improve=0.03338886, (0 missing)
chlorides < 0.0495 to the right, improve=0.02574623, (0 missing)
citric.acid < 0.195 to the left, improve=0.02327981, (0 missing)
Surrogate splits:
citric.acid < 0.215 to the left, agree=0.633, adj=0.141, (0 split)
free.sulfur.dioxide < 20.5 to the left, agree=0.600, adj=0.063, (0 split)
chlorides < 0.0595 to the right, agree=0.593, adj=0.047, (0 split)
residual.sugar < 1.15 to the left, agree=0.583, adj=0.023, (0 split)
total.sulfur.dioxide < 219.25 to the right, agree=0.582, adj=0.022, (0 split)
Node number 5: 761 observations
mean=5.971091, MSE=0.5878633
Node number 6: 84 observations
mean=5.369048, MSE=1.137613
Node number 7: 1294 observations, complexity param=0.01970128
mean=6.391036, MSE=0.6894405
left son=14 (629 obs) right son=15 (665 obs)
Primary splits:
alcohol < 11.76667 to the left, improve=0.06504696, (0 missing)
chlorides < 0.0395 to the right, improve=0.02758705, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02750932, (0 missing)
pH < 3.055 to the left, improve=0.02307356, (0 missing)
total.sulfur.dioxide < 191.5 to the right, improve=0.02186818, (0 missing)
Surrogate splits:
density < 0.990885 to the right, agree=0.720, adj=0.424, (0 split)
volatile.acidity < 0.2675 to the left, agree=0.637, adj=0.253, (0 split)
chlorides < 0.0365 to the right, agree=0.630, adj=0.238, (0 split)
residual.sugar < 1.475 to the left, agree=0.575, adj=0.126, (0 split)
total.sulfur.dioxide < 128.5 to the right, agree=0.574, adj=0.124, (0 split)
Node number 8: 688 observations
mean=5.255814, MSE=0.4054895
Node number 9: 923 observations
mean=5.56338, MSE=0.5471747
Node number 14: 629 observations, complexity param=0.01007193
mean=6.173291, MSE=0.6838017
left son=28 (11 obs) right son=29 (618 obs)
Primary splits:
volatile.acidity < 0.465 to the right, improve=0.06897561, (0 missing)
total.sulfur.dioxide < 200 to the right, improve=0.04223066, (0 missing)
residual.sugar < 0.975 to the left, improve=0.03061714, (0 missing)
fixed.acidity < 7.35 to the right, improve=0.02978501, (0 missing)
sulphates < 0.575 to the left, improve=0.02165970, (0 missing)
Surrogate splits:
citric.acid < 0.045 to the left, agree=0.986, adj=0.182, (0 split)
total.sulfur.dioxide < 279.25 to the right, agree=0.986, adj=0.182, (0 split)
Node number 15: 665 observations
mean=6.596992, MSE=0.6075098
Node number 28: 11 observations
mean=4.545455, MSE=0.9752066
Node number 29: 618 observations
mean=6.202265, MSE=0.6306098
use the rpart.plot package to create a visualization
library(rpart.plot)
package ‘rpart.plot’ was built under R version 3.3.2Loading required package: rpart
a basic decision tree diagram
rpart.plot(m.rpart, digits = 3)
a few adjustments to the diagram
rpart.plot(m.rpart, digits = 4, fallen.leaves = TRUE, type = 3, extra = 101)
generate predictions for the testing dataset
p.rpart <- predict(m.rpart, wine_test)
p.rpart
3751 3752 3753 3754 3755 3756
6.596992 5.255814 6.202265 5.971091 5.563380 6.596992
3757 3758 3759 3760 3761 3762
5.255814 5.255814 6.596992 5.563380 5.563380 5.563380
3763 3764 3765 3766 3767 3768
5.255814 5.971091 5.255814 5.369048 6.596992 5.563380
3769 3770 3771 3772 3773 3774
5.255814 5.971091 5.971091 5.971091 5.563380 5.255814
3775 3776 3777 3778 3779 3780
5.971091 5.563380 5.255814 5.255814 6.202265 6.202265
3781 3782 3783 3784 3785 3786
5.255814 5.971091 5.255814 6.202265 6.202265 5.971091
3787 3788 3789 3790 3791 3792
5.255814 6.202265 6.596992 6.202265 5.971091 5.563380
3793 3794 3795 3796 3797 3798
6.202265 5.971091 5.563380 5.563380 5.563380 6.596992
3799 3800 3801 3802 3803 3804
5.255814 6.202265 6.596992 5.563380 6.202265 6.202265
3805 3806 3807 3808 3809 3810
6.596992 6.202265 6.202265 6.596992 4.545455 5.563380
3811 3812 3813 3814 3815 3816
5.255814 5.563380 5.563380 5.563380 5.563380 5.255814
3817 3818 3819 3820 3821 3822
5.563380 5.563380 5.971091 6.202265 6.596992 6.202265
3823 3824 3825 3826 3827 3828
5.255814 5.255814 5.971091 6.596992 5.971091 5.563380
3829 3830 3831 3832 3833 3834
5.971091 5.255814 5.255814 5.971091 5.563380 6.202265
3835 3836 3837 3838 3839 3840
5.563380 5.971091 5.369048 6.596992 5.971091 5.563380
3841 3842 3843 3844 3845 3846
6.596992 5.971091 5.255814 6.202265 5.971091 5.255814
3847 3848 3849 3850 3851 3852
5.563380 6.596992 6.202265 5.255814 6.202265 6.596992
3853 3854 3855 3856 3857 3858
5.971091 5.563380 5.971091 6.202265 5.255814 6.202265
3859 3860 3861 3862 3863 3864
5.255814 6.202265 6.202265 5.563380 5.971091 6.202265
3865 3866 3867 3868 3869 3870
5.255814 5.369048 5.255814 5.563380 5.971091 6.202265
3871 3872 3873 3874 3875 3876
5.971091 5.971091 5.255814 5.563380 5.563380 6.202265
3877 3878 3879 3880 3881 3882
5.255814 5.255814 5.255814 5.563380 6.202265 5.971091
3883 3884 3885 3886 3887 3888
5.971091 5.255814 5.563380 6.202265 5.255814 5.971091
3889 3890 3891 3892 3893 3894
5.563380 5.971091 6.202265 5.563380 5.563380 6.202265
3895 3896 3897 3898 3899 3900
5.971091 6.202265 5.971091 6.596992 5.255814 5.255814
3901 3902 3903 3904 3905 3906
5.563380 5.971091 5.255814 5.563380 6.596992 6.596992
3907 3908 3909 3910 3911 3912
5.971091 6.596992 5.563380 5.971091 6.202265 5.563380
3913 3914 3915 3916 3917 3918
5.971091 6.202265 5.563380 6.202265 6.202265 5.255814
3919 3920 3921 3922 3923 3924
5.971091 5.255814 5.971091 5.971091 5.971091 5.971091
3925 3926 3927 3928 3929 3930
6.596992 5.255814 5.255814 5.971091 6.596992 5.563380
3931 3932 3933 3934 3935 3936
5.563380 5.971091 5.255814 5.971091 6.202265 5.971091
3937 3938 3939 3940 3941 3942
5.255814 6.596992 5.563380 6.596992 5.255814 5.563380
3943 3944 3945 3946 3947 3948
5.563380 6.596992 6.202265 6.596992 5.563380 6.202265
3949 3950 3951 3952 3953 3954
6.596992 6.596992 6.596992 6.202265 6.596992 5.971091
3955 3956 3957 3958 3959 3960
5.971091 6.596992 5.563380 6.202265 6.202265 6.596992
3961 3962 3963 3964 3965 3966
5.255814 5.255814 5.255814 6.202265 5.255814 6.202265
3967 3968 3969 3970 3971 3972
5.563380 5.255814 5.971091 5.971091 6.202265 6.202265
3973 3974 3975 3976 3977 3978
5.255814 5.255814 6.596992 5.971091 5.255814 5.971091
3979 3980 3981 3982 3983 3984
5.563380 5.971091 6.596992 5.971091 5.971091 5.971091
3985 3986 3987 3988 3989 3990
6.202265 5.255814 6.202265 5.971091 5.563380 6.202265
3991 3992 3993 3994 3995 3996
5.563380 5.971091 5.563380 5.563380 5.971091 5.563380
3997 3998 3999 4000 4001 4002
6.596992 5.971091 6.596992 6.596992 5.971091 5.255814
4003 4004 4005 4006 4007 4008
5.563380 6.202265 5.563380 5.563380 6.596992 6.596992
4009 4010 4011 4012 4013 4014
5.971091 6.202265 6.202265 5.563380 5.563380 5.563380
4015 4016 4017 4018 4019 4020
6.202265 6.202265 6.202265 5.255814 5.563380 5.971091
4021 4022 4023 4024 4025 4026
6.202265 5.971091 6.596992 5.563380 5.255814 6.596992
4027 4028 4029 4030 4031 4032
5.255814 6.202265 5.971091 6.202265 5.971091 5.971091
4033 4034 4035 4036 4037 4038
5.971091 5.563380 5.255814 5.255814 5.255814 5.563380
4039 4040 4041 4042 4043 4044
5.563380 5.563380 5.563380 5.369048 6.202265 5.563380
4045 4046 4047 4048 4049 4050
6.596992 6.596992 6.596992 5.971091 6.202265 6.202265
4051 4052 4053 4054 4055 4056
6.596992 6.596992 5.255814 5.971091 5.255814 5.971091
4057 4058 4059 4060 4061 4062
5.971091 5.971091 5.971091 5.255814 5.971091 6.202265
4063 4064 4065 4066 4067 4068
5.563380 6.596992 5.971091 5.971091 5.255814 5.563380
4069 4070 4071 4072 4073 4074
5.255814 6.596992 5.563380 5.563380 5.563380 5.563380
4075 4076 4077 4078 4079 4080
5.563380 6.596992 5.255814 6.202265 5.971091 6.596992
4081 4082 4083 4084 4085 4086
5.563380 5.971091 5.971091 5.255814 5.563380 5.563380
4087 4088 4089 4090 4091 4092
5.971091 6.596992 5.971091 6.202265 6.596992 5.563380
4093 4094 4095 4096 4097 4098
6.596992 5.563380 6.202265 5.255814 5.255814 6.202265
4099 4100 4101 4102 4103 4104
5.563380 6.202265 5.971091 6.596992 5.255814 6.202265
4105 4106 4107 4108 4109 4110
6.596992 6.596992 5.255814 6.596992 5.563380 6.202265
4111 4112 4113 4114 4115 4116
5.255814 5.563380 6.596992 6.202265 6.596992 5.971091
4117 4118 4119 4120 4121 4122
5.563380 5.255814 5.971091 6.202265 5.563380 6.596992
4123 4124 4125 4126 4127 4128
5.255814 5.971091 6.596992 6.596992 5.255814 5.369048
4129 4130 4131 4132 4133 4134
5.255814 5.563380 6.202265 6.202265 5.255814 6.202265
4135 4136 4137 4138 4139 4140
5.255814 5.563380 5.255814 6.202265 5.563380 5.255814
4141 4142 4143 4144 4145 4146
6.596992 5.971091 5.369048 5.563380 5.971091 6.596992
4147 4148 4149 4150 4151 4152
6.596992 6.202265 5.971091 5.255814 6.596992 5.971091
4153 4154 4155 4156 4157 4158
5.971091 5.971091 5.971091 6.596992 5.563380 5.971091
4159 4160 4161 4162 4163 4164
5.563380 6.596992 6.596992 5.563380 5.255814 6.202265
4165 4166 4167 4168 4169 4170
6.596992 6.202265 6.596992 6.202265 5.971091 5.563380
4171 4172 4173 4174 4175 4176
6.596992 5.255814 5.563380 5.255814 5.563380 6.596992
4177 4178 4179 4180 4181 4182
6.596992 5.563380 6.202265 6.596992 5.255814 5.563380
4183 4184 4185 4186 4187 4188
5.255814 5.563380 6.596992 5.255814 6.596992 6.596992
4189 4190 4191 4192 4193 4194
6.202265 6.596992 5.563380 5.563380 5.563380 5.971091
4195 4196 4197 4198 4199 4200
6.202265 6.596992 6.596992 5.971091 5.255814 6.596992
4201 4202 4203 4204 4205 4206
5.255814 6.202265 5.255814 5.563380 6.202265 6.596992
4207 4208 4209 4210 4211 4212
5.255814 5.563380 5.971091 5.563380 5.971091 5.971091
4213 4214 4215 4216 4217 4218
5.563380 5.255814 5.563380 5.563380 5.971091 5.255814
4219 4220 4221 4222 4223 4224
6.202265 6.596992 5.563380 5.563380 5.971091 5.971091
4225 4226 4227 4228 4229 4230
6.202265 5.563380 6.596992 6.596992 5.255814 6.202265
4231 4232 4233 4234 4235 4236
6.202265 5.563380 5.971091 6.202265 5.563380 6.202265
4237 4238 4239 4240 4241 4242
5.563380 6.202265 5.563380 5.255814 6.596992 5.563380
4243 4244 4245 4246 4247 4248
5.971091 5.563380 6.596992 5.255814 5.255814 5.255814
4249 4250 4251 4252 4253 4254
5.971091 6.202265 5.255814 5.563380 6.596992 5.971091
4255 4256 4257 4258 4259 4260
5.255814 6.596992 5.369048 6.202265 5.255814 6.596992
4261 4262 4263 4264 4265 4266
5.255814 6.596992 6.202265 6.202265 5.563380 6.596992
4267 4268 4269 4270 4271 4272
5.563380 5.971091 5.563380 5.369048 5.563380 5.255814
4273 4274 4275 4276 4277 4278
6.202265 6.202265 5.563380 5.563380 6.596992 6.596992
4279 4280 4281 4282 4283 4284
6.202265 5.971091 6.596992 5.971091 5.971091 6.596992
4285 4286 4287 4288 4289 4290
5.563380 5.563380 5.971091 5.563380 5.971091 6.596992
4291 4292 4293 4294 4295 4296
6.202265 5.255814 6.202265 5.971091 5.255814 6.596992
4297 4298 4299 4300 4301 4302
6.596992 5.563380 6.202265 6.596992 5.563380 5.971091
4303 4304 4305 4306 4307 4308
5.971091 5.971091 5.255814 5.255814 6.202265 5.971091
4309 4310 4311 4312 4313 4314
5.971091 6.596992 6.596992 6.596992 5.563380 5.255814
4315 4316 4317 4318 4319 4320
6.596992 6.202265 6.202265 5.255814 6.202265 5.255814
4321 4322 4323 4324 4325 4326
6.202265 6.202265 5.971091 6.202265 5.563380 6.202265
4327 4328 4329 4330 4331 4332
5.971091 5.563380 6.596992 5.255814 6.202265 5.255814
4333 4334 4335 4336 4337 4338
5.255814 6.202265 5.563380 5.971091 6.596992 5.563380
4339 4340 4341 4342 4343 4344
5.255814 5.971091 5.255814 6.202265 5.563380 6.202265
4345 4346 4347 4348 4349 4350
6.202265 6.596992 5.971091 5.255814 5.255814 5.971091
4351 4352 4353 4354 4355 4356
6.202265 6.596992 5.255814 5.971091 5.971091 5.563380
4357 4358 4359 4360 4361 4362
5.971091 6.202265 5.563380 5.255814 5.255814 5.255814
4363 4364 4365 4366 4367 4368
5.971091 6.202265 5.255814 6.596992 5.563380 5.971091
4369 4370 4371 4372 4373 4374
5.971091 6.596992 5.563380 5.563380 5.255814 6.596992
4375 4376 4377 4378 4379 4380
5.563380 5.971091 6.596992 5.563380 6.202265 6.202265
4381 4382 4383 4384 4385 4386
5.563380 6.596992 6.596992 5.563380 5.971091 6.596992
4387 4388 4389 4390 4391 4392
5.369048 6.202265 6.202265 6.202265 5.563380 5.255814
4393 4394 4395 4396 4397 4398
5.563380 6.596992 5.971091 6.202265 5.563380 6.202265
4399 4400 4401 4402 4403 4404
6.202265 5.563380 5.563380 5.971091 6.596992 5.255814
4405 4406 4407 4408 4409 4410
5.563380 6.596992 6.202265 5.563380 5.971091 6.202265
4411 4412 4413 4414 4415 4416
5.563380 5.255814 5.255814 5.971091 6.596992 5.255814
4417 4418 4419 4420 4421 4422
6.596992 5.255814 5.255814 5.255814 6.596992 5.971091
4423 4424 4425 4426 4427 4428
5.563380 6.596992 5.255814 6.596992 5.255814 5.255814
4429 4430 4431 4432 4433 4434
6.202265 5.563380 5.255814 5.563380 5.971091 6.596992
4435 4436 4437 4438 4439 4440
6.596992 5.255814 6.596992 6.596992 5.971091 5.255814
4441 4442 4443 4444 4445 4446
5.563380 5.563380 5.563380 5.563380 5.971091 6.596992
4447 4448 4449 4450 4451 4452
5.971091 5.563380 5.971091 5.563380 5.255814 5.563380
4453 4454 4455 4456 4457 4458
6.202265 6.202265 6.596992 6.596992 5.971091 5.971091
4459 4460 4461 4462 4463 4464
6.202265 5.563380 5.971091 5.971091 6.202265 5.563380
4465 4466 4467 4468 4469 4470
6.596992 5.971091 6.202265 6.596992 6.202265 5.563380
4471 4472 4473 4474 4475 4476
5.563380 5.563380 5.971091 5.255814 6.202265 5.563380
4477 4478 4479 4480 4481 4482
6.596992 5.971091 6.596992 5.971091 5.255814 6.596992
4483 4484 4485 4486 4487 4488
5.971091 5.563380 6.202265 6.596992 6.596992 6.202265
4489 4490 4491 4492 4493 4494
5.255814 6.596992 6.202265 5.971091 6.596992 6.596992
4495 4496 4497 4498 4499 4500
5.971091 5.563380 5.971091 5.971091 6.596992 6.202265
4501 4502 4503 4504 4505 4506
6.202265 6.596992 6.596992 5.255814 6.596992 5.563380
4507 4508 4509 4510 4511 4512
6.202265 5.971091 6.596992 5.971091 5.563380 5.563380
4513 4514 4515 4516 4517 4518
5.563380 6.202265 6.596992 5.563380 6.596992 5.255814
4519 4520 4521 4522 4523 4524
6.596992 6.202265 5.563380 5.971091 6.202265 6.596992
4525 4526 4527 4528 4529 4530
5.563380 5.255814 5.563380 5.971091 6.202265 6.596992
4531 4532 4533 4534 4535 4536
5.563380 5.971091 5.563380 5.563380 5.971091 5.255814
4537 4538 4539 4540 4541 4542
6.596992 5.255814 6.202265 5.971091 6.596992 6.596992
4543 4544 4545 4546 4547 4548
5.563380 5.971091 6.202265 5.563380 6.596992 5.971091
4549 4550 4551 4552 4553 4554
6.202265 5.255814 6.596992 5.563380 6.596992 5.971091
4555 4556 4557 4558 4559 4560
6.596992 6.596992 6.596992 5.255814 5.971091 5.255814
4561 4562 4563 4564 4565 4566
5.563380 5.255814 6.596992 6.596992 6.596992 5.369048
4567 4568 4569 4570 4571 4572
6.596992 5.255814 5.255814 5.563380 6.202265 6.202265
4573 4574 4575 4576 4577 4578
6.596992 5.255814 6.596992 6.596992 5.971091 5.255814
4579 4580 4581 4582 4583 4584
5.255814 5.971091 5.971091 5.971091 5.971091 6.202265
4585 4586 4587 4588 4589 4590
5.255814 5.255814 5.563380 6.596992 5.255814 5.971091
4591 4592 4593 4594 4595 4596
6.596992 5.255814 5.255814 6.596992 5.971091 5.563380
4597 4598 4599 4600 4601 4602
5.971091 6.202265 5.255814 5.563380 5.255814 5.255814
4603 4604 4605 4606 4607 4608
5.971091 5.971091 5.255814 6.202265 5.971091 5.563380
4609 4610 4611 4612 4613 4614
6.202265 6.202265 6.202265 6.596992 6.596992 5.563380
4615 4616 4617 4618 4619 4620
6.596992 5.563380 5.971091 5.971091 6.596992 6.596992
4621 4622 4623 4624 4625 4626
5.563380 5.971091 5.971091 6.202265 6.202265 5.255814
4627 4628 4629 4630 4631 4632
6.596992 6.596992 5.563380 5.255814 5.255814 5.563380
4633 4634 4635 4636 4637 4638
6.202265 6.202265 5.255814 5.255814 6.596992 5.563380
4639 4640 4641 4642 4643 4644
5.255814 6.202265 6.202265 5.563380 6.202265 5.563380
4645 4646 4647 4648 4649 4650
5.255814 5.971091 5.971091 5.255814 5.971091 5.563380
4651 4652 4653 4654 4655 4656
5.971091 5.563380 5.563380 6.202265 5.563380 5.563380
4657 4658 4659 4660 4661 4662
5.563380 6.596992 5.563380 6.202265 5.563380 6.202265
4663 4664 4665 4666 4667 4668
5.255814 5.255814 6.596992 5.563380 5.971091 5.971091
4669 4670 4671 4672 4673 4674
5.255814 5.563380 5.971091 5.971091 5.255814 6.596992
4675 4676 4677 4678 4679 4680
5.971091 5.971091 5.971091 5.255814 6.596992 5.971091
4681 4682 4683 4684 4685 4686
5.563380 6.202265 5.255814 6.596992 5.255814 5.563380
4687 4688 4689 4690 4691 4692
5.563380 6.202265 5.971091 5.255814 5.255814 5.563380
4693 4694 4695 4696 4697 4698
5.563380 6.202265 6.202265 5.971091 5.563380 6.596992
4699 4700 4701 4702 4703 4704
6.596992 5.971091 6.202265 6.596992 5.563380 5.369048
4705 4706 4707 4708 4709 4710
5.255814 5.255814 6.202265 5.255814 6.202265 5.563380
4711 4712 4713 4714 4715 4716
5.255814 6.202265 6.596992 5.971091 5.971091 6.596992
4717 4718 4719 4720 4721 4722
6.202265 5.255814 5.563380 6.202265 6.202265 5.971091
4723 4724 4725 4726 4727 4728
5.563380 5.255814 5.369048 5.563380 6.596992 6.202265
4729 4730 4731 4732 4733 4734
5.563380 6.596992 5.563380 5.971091 5.255814 5.563380
4735 4736 4737 4738 4739 4740
6.596992 6.202265 5.971091 5.971091 6.596992 5.563380
4741 4742 4743 4744 4745 4746
5.971091 5.255814 5.563380 5.563380 5.255814 6.596992
4747 4748 4749 4750
5.255814 6.202265 5.255814 6.596992
[ reached getOption("max.print") -- omitted 148 entries ]
compare the distribution of predicted values vs. actual values
summary(p.rpart)
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.545 5.563 5.971 5.893 6.202 6.597
summary(wine_test$quality)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 5.000 6.000 5.901 6.000 9.000
compare the correlation
cor(p.rpart, wine_test$quality) # regression tress making good job cuz cor value is high
[1] 0.5369525
function to calculate the mean absolute error
MAE <- function(actual, predicted) {
mean(abs(actual - predicted))
}
mean absolute error between predicted and actual values
MAE(p.rpart, wine_test$quality)
[1] 0.5872652
This implies that, on average, the difference between our model’s predictions and the true quality score was about 0.59. On a quality scale from zero to 10, this seems to suggest that our model is doing fairly well.
mean absolute error between actual values and mean value
mean(wine_train$quality) # result = 5.87
[1] 5.870933
MAE(5.87, wine_test$quality)
[1] 0.6722474
If we predicted the value 5.87 for every wine sample, we would have a mean absolute error of only about 0.67
library(RWeka)
Error in library(RWeka) : there is no package called ‘RWeka’
m.m5p
summary(m.m5p)
p.m5p <- predict(m.m5p, wine_test)
summary(p.m5p)
cor(p.m5p, wine_test$quality)
MAE(wine_test$quality, p.m5p)