This Document contains information regarding U.S National Oceanic and Atmospheric Admnistrations (NOA) storm database.

Themes included in this paper are related to the impact on economic and Health caused by the most recorded natural disasters in the US.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Loading and Processing Data.

setwd("E:/DScience/Reproducible_Research/Week4")
getwd()
## [1] "E:/DScience/Reproducible_Research/Week4"
data <-read.csv("repdata%2Fdata%2FStormData.csv.bz2")
head(data)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

Results

In order to have a quick view of the kind of data we will be dealing with we can go ahead and use some of the R tools to visualize. but first we will need to filter the data we want to work with. We will start with collecting information about the fatalities for each event type.

 fatalities <- aggregate(FATALITIES ~ EVTYPE, data = data, sum)
 fatalities <- fatalities[fatalities$FATALITIES > 0,]
 fatalities_desc <- fatalities[order(fatalities$FATALITIES, decreasing = TRUE),]
 head(fatalities_desc)
##             EVTYPE FATALITIES
## 834        TORNADO       5633
## 130 EXCESSIVE HEAT       1903
## 153    FLASH FLOOD        978
## 275           HEAT        937
## 464      LIGHTNING        816
## 856      TSTM WIND        504

Besides fatalities we can compute information related to the injuries.

Injuries <- aggregate(INJURIES ~ EVTYPE, data = data, sum)
Injuries <- Injuries[Injuries$INJURIES > 0,]
Injuries_desc <- Injuries[order(Injuries$INJURIES, decreasing = TRUE),]
head(Injuries_desc)
##             EVTYPE INJURIES
## 834        TORNADO    91346
## 856      TSTM WIND     6957
## 170          FLOOD     6789
## 130 EXCESSIVE HEAT     6525
## 464      LIGHTNING     5230
## 275           HEAT     2100

Here is a summary for fatalities for different events( in form of ggplot graph)

par(mfrow = c(1,1))
barplot(fatalities_desc[1:5, 2],col=rainbow(5), names = fatalities_desc[1:5, 1], ylab = "Fatality", main = "top events")

Across the United States, which types of events have the greatest economic consequences?

In order to answer this question we will need to extract two variables, PROPDMG and CROPDMG.

PropretyDemages <- aggregate(PROPDMG ~ EVTYPE, data = data, sum)
PropretyDemages <-PropretyDemages[PropretyDemages$PROPDMG >0,]
propretyDemages_desc <- PropretyDemages[order(PropretyDemages$PROPDMG,decreasing = TRUE),]
head(propretyDemages_desc)

here is a ggplot for proprerty demages

 par(mfrow = c(1,1))
PropretyDemages <- aggregate(PROPDMG ~ EVTYPE, data = data, sum)
propretyDemages_desc <- PropretyDemages[order(PropretyDemages$PROPDMG,decreasing = TRUE),]
barplot(propretyDemages_desc[1:10, 2], col = "green", legend.text = propretyDemages_desc[1:10,1], ylab = "propretyDemages", main = "Most proprety Demages")

Across the United State the most types of events that have the greatest economic consequences for crops are.

cropDemages <- aggregate(CROPDMG ~ EVTYPE, data = data, sum)
cropDemages <-cropDemages[cropDemages$CROPDMG >0,]
cropDemages_desc <- cropDemages[order(cropDemages$CROPDMG,decreasing = TRUE),]
head(cropDemages_desc)
##                EVTYPE   CROPDMG
## 244              HAIL 579596.28
## 153       FLASH FLOOD 179200.46
## 170             FLOOD 168037.88
## 856         TSTM WIND 109202.60
## 834           TORNADO 100018.52
## 760 THUNDERSTORM WIND  66791.45