Grading the professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)

In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.

The data

The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is a slightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.

load("more/evals.RData")
library(ggplot2)
library(BrailleR)
## Warning: package 'BrailleR' was built under R version 3.3.3
## Loading required package: knitr
## The BrailleR.View,  option is set to FALSE.
## 
## Attaching package: 'BrailleR'
## The following objects are masked from 'package:graphics':
## 
##     boxplot, hist
## The following object is masked from 'package:utils':
## 
##     history
variable description
score average professor evaluation score: (1) very unsatisfactory - (5) excellent.
rank rank of professor: teaching, tenure track, tenured.
ethnicity ethnicity of professor: not minority, minority.
gender gender of professor: female, male.
language language of school where professor received education: english or non-english.
age age of professor.
cls_perc_eval percent of students in class who completed evaluation.
cls_did_eval number of students in class who completed evaluation.
cls_students total number of students in class.
cls_level class level: lower, upper.
cls_profs number of professors teaching sections in course in sample: single, multiple.
cls_credits number of credits of class: one credit (lab, PE, etc.), multi credit.
bty_f1lower beauty rating of professor from lower level female: (1) lowest - (10) highest.
bty_f1upper beauty rating of professor from upper level female: (1) lowest - (10) highest.
bty_f2upper beauty rating of professor from second upper level female: (1) lowest - (10) highest.
bty_m1lower beauty rating of professor from lower level male: (1) lowest - (10) highest.
bty_m1upper beauty rating of professor from upper level male: (1) lowest - (10) highest.
bty_m2upper beauty rating of professor from second upper level male: (1) lowest - (10) highest.
bty_avg average beauty rating of professor.
pic_outfit outfit of professor in picture: not formal, formal.
pic_color color of professor’s picture: color, black & white.

Exploring the data

  1. Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

jmb This seems to be an observational study. The abstract mentions:

“Disentangling whether this outcome represents productivity or discrimination is, as with the issue generally, probably impossible.”

Given the design of the study, it would be possible to demonstrate that it’s probably not possible to confirm/deny what is the source of the differences in outcomes and that’s how I’d phrase the question.

  1. Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?

jmb See the plot below. This distibtuion seems to be skewed - it appears that the mean ratings are above a middle-score of 2.5. This tells me that students are kind when it comes to rating professors. In general, I’d expect students at a university they’re attending to be more favorable to professors, too.

# histogram
hist(x = evals$score)

  1. Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).

jmb as shown in the scatter plot of average beauty score (bty_avg) by age, there appears to be a relationship between age and the avg beauty score of the professor: the older the prof, the lower the average beauty score.

# scatter-plot of age v avg beauty score - 
plot(x = evals$age, y = evals$bty_avg)

Simple linear regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:

plot(evals$score ~ evals$bty_avg)
#plot(x = evals$bty_avg, y = evals$score)
#View(evals)

Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?

jmb Yes because it seems like the bulk of the positive scores are actually within the lower-level beauty region.

# using BrailleR, I plot the the counts of points in a plot:  
WhereXY(x = evals$bty_avg, y = evals$score, grid = c(8,5))
##      1  2  3   4  5  6  7  8 Sum
## 5    5 19 39  37 19 21 19 12 171
## 4   14 28 22  49 14 11  4  1 143
## 3   10 28 15  34  4 11  5  5 112
## 2    7  1  6   3  5  2  2  2  28
## 1    4  1  1   2  1  0  0  0   9
## Sum 40 77 83 125 43 45 30 20 463
  1. Replot the scatterplot, but this time use the function jitter() on the \(y\)- or the \(x\)-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?

jmb Yes, the scatterplot implied a positive correlation between score and beauty - it’s clear here that using regression could be misleading - still - a linear trend is apparent.

qplot(data = evals, x = bty_avg, y = score, geom = 'jitter', alpha = .5, size = .1)

  1. Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?

jmb The equation below suggests that each bty_avg point increases the prof. rating by .06 pts. Even a prof. w/ a beauty score of 1 will receive a score above 3.5.

\[ \hat{y} = 3.88034 + 0.06664 * bty_avg \]

Further, I note that a p value of very close to zero makes this a statistically significant predictor but it may not be practically significant because the slope of .06 doesn’t change the eval score in a major way.

m_bty <- lm( score ~ bty_avg, data = evals)
plot(jitter(evals$score) ~ evals$bty_avg)
abline(m_bty)

cor(evals$score, evals$bty_avg)
## [1] 0.1871424
summary(m_bty)
## 
## Call:
## lm(formula = score ~ bty_avg, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.88034    0.07614   50.96  < 2e-16 ***
## bty_avg      0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05
# ggplot(data = evals, aes(x = bty_avg, y = score)) + 
#   geom_jitter(alpha =.5, size = 2) +
#   stat_smooth(method = "lm")
  1. Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

jmb the residuals, as shown below, appear to form a normal-like distribution - the qq plot does indicate tails which is a argument against the data being normal but the sample size is pretty big so it might be ok.

hist(m_bty$residuals)

qqnorm(m_bty$residuals)
qqline(m_bty$residuals)  # adds diagonal line to the normal prob plot

Also note that the variability of the residuals is nearly constant in the below plot:

plot(m_bty$residuals ~ evals$bty_avg)

Multiple linear regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

plot(evals$bty_avg ~ evals$bty_f1lower)
cor(evals$bty_avg, evals$bty_f1lower)

As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:

plot(evals[,13:19])

These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.

In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
plot(m_bty_gen$residuals) 
hist(m_bty_gen$residuals)
  1. P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.

jmb As shown above, the residuals appear nearly normal and the sample size is large enough that we could probably ignore the tails.

#summary(m_bty_gen)
#plot(abs(m_bty_gen$residuals) ~ m_bty_gen#) # note the variablity 
plot(evals$score ~ evals$gender)

  1. Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

jmb yes - bty_avg is still a sig predictor of score - see the R value in the summary above that shows is very close to zero.

Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of female and male to being an indicator variable called gendermale that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)

As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.

\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]

We can plot this line and the line corresponding to males with the following custom function.

multiLines(m_bty_gen)
  1. What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?

jmb Males get a higher score than females who have the same bty_avg.

The decision to call the indicator variable gendermale instead ofgenderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel function. Use ?relevel to learn more.)

  1. Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.

jmb it’s handles each one individually.

m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05
multiLines(m_bty_rank)

The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.

The search for the best model

We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.

  1. Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

jmb I suspect cls_profs will have the least impact b/c it’s just the number of profs included.

Let’s run the model…

m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
  1. Check your suspicions from the previous exercise. Include the model output in your response.

jmb See the plot below that shows that mult and single are very similar.

plot(evals$score ~ evals$cls_profs)

  1. Interpret the coefficient associated with the ethnicity variable.

jmb the p-value w/r/t ethnicity is 0.11698 - this indicates to me that there isn’t a strong relationship between a profs score and their ethnicity.

  1. Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?

jmb it now appears that the remaining vars are more significant as a result of removing cls_profs.

m_full_new <- lm(score ~ rank + ethnicity + gender + 
                   language + age + cls_perc_eval + 
                   cls_students + cls_level + cls_credits + 
                   bty_avg + pic_outfit + pic_color, data = evals)
summary(m_full_new)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14
  1. Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

jmb See the below code after a few iterations:

my_bkwds <- lm(score ~ ethnicity + gender + language + 
                 age + cls_perc_eval + 
                 cls_students + cls_credits + 
                 bty_avg + pic_outfit + pic_color, data = evals)

#cls_levelupper,

summary(my_bkwds)
## 
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_credits + bty_avg + pic_outfit + pic_color, 
##     data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8359 -0.3279  0.1091  0.3580  0.9246 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.8416744  0.2545186  15.094  < 2e-16 ***
## ethnicitynot minority  0.1633889  0.0751687   2.174 0.030251 *  
## gendermale             0.1973563  0.0504149   3.915 0.000104 ***
## languagenon-english   -0.2323071  0.1072462  -2.166 0.030825 *  
## age                   -0.0066873  0.0026698  -2.505 0.012605 *  
## cls_perc_eval          0.0054269  0.0015309   3.545 0.000434 ***
## cls_students           0.0003365  0.0003565   0.944 0.345737    
## cls_creditsone credit  0.5215462  0.1042553   5.003 8.11e-07 ***
## bty_avg                0.0445764  0.0172453   2.585 0.010055 *  
## pic_outfitnot formal  -0.0943006  0.0703245  -1.341 0.180615    
## pic_colorcolor        -0.1872592  0.0678025  -2.762 0.005982 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4982 on 452 degrees of freedom
## Multiple R-squared:  0.179,  Adjusted R-squared:  0.1608 
## F-statistic: 9.855 on 10 and 452 DF,  p-value: 5.553e-15

\[ \hat{scr} = 3.84 + .16*eth + .197*gen -.24*lang -.006*age +.005*perc + .0003*stud + .52*crd + .04*bty_avg -.09*outfit -.187*colr \]

  1. Verify that the conditions for this model are reasonable using diagnostic plots.

jmb First the residuals look normal in nature,

hist(my_bkwds$residuals)

The residuals in the QQ plot below appear to have some skew - the sample size may allow us to put this aside.

qqnorm(my_bkwds$residuals)
qqline(my_bkwds$residuals)

And below the residuals appear pretty evenly spread apart (nearly constant variability)

plot(my_bkwds$residuals)

  1. The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

jmb The courses are not dependant on eachother so no.

  1. Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

jmb For a high value score, the professor is likely male, non-minority, and teaching a one-credit course.

  1. Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

jmb For this school, sure, however, I would not feel comfortable making a generalization without looking at a few more schools because a particularly “beautiful” faculty may reveal something else.

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written by Mine Çetinkaya-Rundel and Andrew Bray.