binom.test(2,132,p=0.05, alternative = "less")
##
## Exact binomial test
##
## data: 2 and 132
## number of successes = 2, number of trials = 132, p-value = 0.03658
## alternative hypothesis: true probability of success is less than 0.05
## 95 percent confidence interval:
## 0.00000000 0.04692521
## sample estimates:
## probability of success
## 0.01515152
entrenamiento <-read.table("trcData.csv",header = TRUE, sep = ";")
head(entrenamiento)
## Edad TRCAntes TRCDesp
## 1 40-49 12.24 11.81
## 2 40-49 12.45 11.50
## 3 40-49 11.04 10.55
## 4 40-49 11.22 10.33
## 5 40-49 11.58 10.63
## 6 40-49 8.34 8.35
qqnorm( entrenamiento$TRCAntes[ entrenamiento$Edad == "40-49" ] )
qqline( entrenamiento$TRCAntes[ entrenamiento$Edad == "40-49" ] )
### y el shapiro.test (menos de 50 observaciones)
shapiro.test( entrenamiento$TRCAntes[ entrenamiento$Edad == "40-49" ] )
##
## Shapiro-Wilk normality test
##
## data: entrenamiento$TRCAntes[entrenamiento$Edad == "40-49"]
## W = 0.76, p-value = 0.002372
qqnorm( entrenamiento$TRCAntes[ entrenamiento$Edad == "50-59" ] )
qqline( entrenamiento$TRCAntes[ entrenamiento$Edad == "50-59" ] )
shapiro.test( entrenamiento$TRCAntes[ entrenamiento$Edad == "50-59" ] )
##
## Shapiro-Wilk normality test
##
## data: entrenamiento$TRCAntes[entrenamiento$Edad == "50-59"]
## W = 0.86474, p-value = 0.1079
fligner.test(entrenamiento$TRCAntes,entrenamiento$Edad)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: entrenamiento$TRCAntes and entrenamiento$Edad
## Fligner-Killeen:med chi-squared = 4.8035, df = 1, p-value = 0.0284
t.test(entrenamiento$TRCAntes[ entrenamiento$Edad == "40-49" ],
entrenamiento$TRCAntes[ entrenamiento$Edad == "50-59" ],
alternative = "two.sided")
##
## Welch Two Sample t-test
##
## data: entrenamiento$TRCAntes[entrenamiento$Edad == "40-49"] and entrenamiento$TRCAntes[entrenamiento$Edad == "50-59"]
## t = -2.1545, df = 10.048, p-value = 0.0565
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.78044604 0.07873664
## sample estimates:
## mean of x mean of y
## 11.10692 13.45778
wilcox.test( TRCAntes ~ Edad, data = entrenamiento)
## Warning in wilcox.test.default(x = c(12.24, 12.45, 11.04, 11.22, 11.58, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: TRCAntes by Edad
## W = 36, p-value = 0.1417
## alternative hypothesis: true location shift is not equal to 0
qqnorm( entrenamiento$TRCDesp )
qqline( entrenamiento$TRCDesp )
shapiro.test(entrenamiento$TRCDesp)
##
## Shapiro-Wilk normality test
##
## data: entrenamiento$TRCDesp
## W = 0.80948, p-value = 0.0007068
t.test (entrenamiento$TRCDesp,mu=10.2,alternative="two.sided")
##
## One Sample t-test
##
## data: entrenamiento$TRCDesp
## t = 2.2943, df = 21, p-value = 0.03218
## alternative hypothesis: true mean is not equal to 10.2
## 95 percent confidence interval:
## 10.31124 12.46604
## sample estimates:
## mean of x
## 11.38864
shapiro.test(entrenamiento$TRCAntes)
##
## Shapiro-Wilk normality test
##
## data: entrenamiento$TRCAntes
## W = 0.83358, p-value = 0.001764
shapiro.test(entrenamiento$TRCDesp)
##
## Shapiro-Wilk normality test
##
## data: entrenamiento$TRCDesp
## W = 0.80948, p-value = 0.0007068
fligner.test(entrenamiento$TRCAntes,entrenamiento$TRCDesp)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: entrenamiento$TRCAntes and entrenamiento$TRCDesp
## Fligner-Killeen:med chi-squared = NaN, df = 21, p-value = NA
t.test( entrenamiento$TRCAntes ,
entrenamiento$TRCDesp,
alternative = "less",
paired = TRUE )
##
## Paired t-test
##
## data: entrenamiento$TRCAntes and entrenamiento$TRCDesp
## t = 6.287, df = 21, p-value = 1
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf 0.8661165
## sample estimates:
## mean of the differences
## 0.68
wilcox.test(entrenamiento$TRCAntes, entrenamiento$TRCDesp, paired=TRUE,alternative = "less")
## Warning in wilcox.test.default(entrenamiento$TRCAntes, entrenamiento
## $TRCDesp, : cannot compute exact p-value with ties
##
## Wilcoxon signed rank test with continuity correction
##
## data: entrenamiento$TRCAntes and entrenamiento$TRCDesp
## V = 247, p-value = 1
## alternative hypothesis: true location shift is less than 0