library(rattle)
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
data(iris)
model=ctree(Species~.,data = iris)
plot(model)

table(predict(model),iris$Species)
##
## setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 49 5
## virginica 0 1 45
library(rpart)
model2=rpart(Species~.,data = iris)
fancyRpartPlot(model2)

predict(model2)
## setosa versicolor virginica
## 1 1 0.00000000 0.00000000
## 2 1 0.00000000 0.00000000
## 3 1 0.00000000 0.00000000
## 4 1 0.00000000 0.00000000
## 5 1 0.00000000 0.00000000
## 6 1 0.00000000 0.00000000
## 7 1 0.00000000 0.00000000
## 8 1 0.00000000 0.00000000
## 9 1 0.00000000 0.00000000
## 10 1 0.00000000 0.00000000
## 11 1 0.00000000 0.00000000
## 12 1 0.00000000 0.00000000
## 13 1 0.00000000 0.00000000
## 14 1 0.00000000 0.00000000
## 15 1 0.00000000 0.00000000
## 16 1 0.00000000 0.00000000
## 17 1 0.00000000 0.00000000
## 18 1 0.00000000 0.00000000
## 19 1 0.00000000 0.00000000
## 20 1 0.00000000 0.00000000
## 21 1 0.00000000 0.00000000
## 22 1 0.00000000 0.00000000
## 23 1 0.00000000 0.00000000
## 24 1 0.00000000 0.00000000
## 25 1 0.00000000 0.00000000
## 26 1 0.00000000 0.00000000
## 27 1 0.00000000 0.00000000
## 28 1 0.00000000 0.00000000
## 29 1 0.00000000 0.00000000
## 30 1 0.00000000 0.00000000
## 31 1 0.00000000 0.00000000
## 32 1 0.00000000 0.00000000
## 33 1 0.00000000 0.00000000
## 34 1 0.00000000 0.00000000
## 35 1 0.00000000 0.00000000
## 36 1 0.00000000 0.00000000
## 37 1 0.00000000 0.00000000
## 38 1 0.00000000 0.00000000
## 39 1 0.00000000 0.00000000
## 40 1 0.00000000 0.00000000
## 41 1 0.00000000 0.00000000
## 42 1 0.00000000 0.00000000
## 43 1 0.00000000 0.00000000
## 44 1 0.00000000 0.00000000
## 45 1 0.00000000 0.00000000
## 46 1 0.00000000 0.00000000
## 47 1 0.00000000 0.00000000
## 48 1 0.00000000 0.00000000
## 49 1 0.00000000 0.00000000
## 50 1 0.00000000 0.00000000
## 51 0 0.90740741 0.09259259
## 52 0 0.90740741 0.09259259
## 53 0 0.90740741 0.09259259
## 54 0 0.90740741 0.09259259
## 55 0 0.90740741 0.09259259
## 56 0 0.90740741 0.09259259
## 57 0 0.90740741 0.09259259
## 58 0 0.90740741 0.09259259
## 59 0 0.90740741 0.09259259
## 60 0 0.90740741 0.09259259
## 61 0 0.90740741 0.09259259
## 62 0 0.90740741 0.09259259
## 63 0 0.90740741 0.09259259
## 64 0 0.90740741 0.09259259
## 65 0 0.90740741 0.09259259
## 66 0 0.90740741 0.09259259
## 67 0 0.90740741 0.09259259
## 68 0 0.90740741 0.09259259
## 69 0 0.90740741 0.09259259
## 70 0 0.90740741 0.09259259
## 71 0 0.02173913 0.97826087
## 72 0 0.90740741 0.09259259
## 73 0 0.90740741 0.09259259
## 74 0 0.90740741 0.09259259
## 75 0 0.90740741 0.09259259
## 76 0 0.90740741 0.09259259
## 77 0 0.90740741 0.09259259
## 78 0 0.90740741 0.09259259
## 79 0 0.90740741 0.09259259
## 80 0 0.90740741 0.09259259
## 81 0 0.90740741 0.09259259
## 82 0 0.90740741 0.09259259
## 83 0 0.90740741 0.09259259
## 84 0 0.90740741 0.09259259
## 85 0 0.90740741 0.09259259
## 86 0 0.90740741 0.09259259
## 87 0 0.90740741 0.09259259
## 88 0 0.90740741 0.09259259
## 89 0 0.90740741 0.09259259
## 90 0 0.90740741 0.09259259
## 91 0 0.90740741 0.09259259
## 92 0 0.90740741 0.09259259
## 93 0 0.90740741 0.09259259
## 94 0 0.90740741 0.09259259
## 95 0 0.90740741 0.09259259
## 96 0 0.90740741 0.09259259
## 97 0 0.90740741 0.09259259
## 98 0 0.90740741 0.09259259
## 99 0 0.90740741 0.09259259
## 100 0 0.90740741 0.09259259
## 101 0 0.02173913 0.97826087
## 102 0 0.02173913 0.97826087
## 103 0 0.02173913 0.97826087
## 104 0 0.02173913 0.97826087
## 105 0 0.02173913 0.97826087
## 106 0 0.02173913 0.97826087
## 107 0 0.90740741 0.09259259
## 108 0 0.02173913 0.97826087
## 109 0 0.02173913 0.97826087
## 110 0 0.02173913 0.97826087
## 111 0 0.02173913 0.97826087
## 112 0 0.02173913 0.97826087
## 113 0 0.02173913 0.97826087
## 114 0 0.02173913 0.97826087
## 115 0 0.02173913 0.97826087
## 116 0 0.02173913 0.97826087
## 117 0 0.02173913 0.97826087
## 118 0 0.02173913 0.97826087
## 119 0 0.02173913 0.97826087
## 120 0 0.90740741 0.09259259
## 121 0 0.02173913 0.97826087
## 122 0 0.02173913 0.97826087
## 123 0 0.02173913 0.97826087
## 124 0 0.02173913 0.97826087
## 125 0 0.02173913 0.97826087
## 126 0 0.02173913 0.97826087
## 127 0 0.02173913 0.97826087
## 128 0 0.02173913 0.97826087
## 129 0 0.02173913 0.97826087
## 130 0 0.90740741 0.09259259
## 131 0 0.02173913 0.97826087
## 132 0 0.02173913 0.97826087
## 133 0 0.02173913 0.97826087
## 134 0 0.90740741 0.09259259
## 135 0 0.90740741 0.09259259
## 136 0 0.02173913 0.97826087
## 137 0 0.02173913 0.97826087
## 138 0 0.02173913 0.97826087
## 139 0 0.02173913 0.97826087
## 140 0 0.02173913 0.97826087
## 141 0 0.02173913 0.97826087
## 142 0 0.02173913 0.97826087
## 143 0 0.02173913 0.97826087
## 144 0 0.02173913 0.97826087
## 145 0 0.02173913 0.97826087
## 146 0 0.02173913 0.97826087
## 147 0 0.02173913 0.97826087
## 148 0 0.02173913 0.97826087
## 149 0 0.02173913 0.97826087
## 150 0 0.02173913 0.97826087
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
model3=randomForest(Species~.,data = iris)
table(predict(model3),iris$Species)
##
## setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 47 4
## virginica 0 3 46
table(predict(model),iris$Species)
##
## setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 49 5
## virginica 0 1 45