library(rattle)
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
data(iris)
model=ctree(Species~.,data = iris)
plot(model)

table(predict(model),iris$Species)
##             
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         49         5
##   virginica       0          1        45
library(rpart)


model2=rpart(Species~.,data = iris)
fancyRpartPlot(model2)

predict(model2)
##     setosa versicolor  virginica
## 1        1 0.00000000 0.00000000
## 2        1 0.00000000 0.00000000
## 3        1 0.00000000 0.00000000
## 4        1 0.00000000 0.00000000
## 5        1 0.00000000 0.00000000
## 6        1 0.00000000 0.00000000
## 7        1 0.00000000 0.00000000
## 8        1 0.00000000 0.00000000
## 9        1 0.00000000 0.00000000
## 10       1 0.00000000 0.00000000
## 11       1 0.00000000 0.00000000
## 12       1 0.00000000 0.00000000
## 13       1 0.00000000 0.00000000
## 14       1 0.00000000 0.00000000
## 15       1 0.00000000 0.00000000
## 16       1 0.00000000 0.00000000
## 17       1 0.00000000 0.00000000
## 18       1 0.00000000 0.00000000
## 19       1 0.00000000 0.00000000
## 20       1 0.00000000 0.00000000
## 21       1 0.00000000 0.00000000
## 22       1 0.00000000 0.00000000
## 23       1 0.00000000 0.00000000
## 24       1 0.00000000 0.00000000
## 25       1 0.00000000 0.00000000
## 26       1 0.00000000 0.00000000
## 27       1 0.00000000 0.00000000
## 28       1 0.00000000 0.00000000
## 29       1 0.00000000 0.00000000
## 30       1 0.00000000 0.00000000
## 31       1 0.00000000 0.00000000
## 32       1 0.00000000 0.00000000
## 33       1 0.00000000 0.00000000
## 34       1 0.00000000 0.00000000
## 35       1 0.00000000 0.00000000
## 36       1 0.00000000 0.00000000
## 37       1 0.00000000 0.00000000
## 38       1 0.00000000 0.00000000
## 39       1 0.00000000 0.00000000
## 40       1 0.00000000 0.00000000
## 41       1 0.00000000 0.00000000
## 42       1 0.00000000 0.00000000
## 43       1 0.00000000 0.00000000
## 44       1 0.00000000 0.00000000
## 45       1 0.00000000 0.00000000
## 46       1 0.00000000 0.00000000
## 47       1 0.00000000 0.00000000
## 48       1 0.00000000 0.00000000
## 49       1 0.00000000 0.00000000
## 50       1 0.00000000 0.00000000
## 51       0 0.90740741 0.09259259
## 52       0 0.90740741 0.09259259
## 53       0 0.90740741 0.09259259
## 54       0 0.90740741 0.09259259
## 55       0 0.90740741 0.09259259
## 56       0 0.90740741 0.09259259
## 57       0 0.90740741 0.09259259
## 58       0 0.90740741 0.09259259
## 59       0 0.90740741 0.09259259
## 60       0 0.90740741 0.09259259
## 61       0 0.90740741 0.09259259
## 62       0 0.90740741 0.09259259
## 63       0 0.90740741 0.09259259
## 64       0 0.90740741 0.09259259
## 65       0 0.90740741 0.09259259
## 66       0 0.90740741 0.09259259
## 67       0 0.90740741 0.09259259
## 68       0 0.90740741 0.09259259
## 69       0 0.90740741 0.09259259
## 70       0 0.90740741 0.09259259
## 71       0 0.02173913 0.97826087
## 72       0 0.90740741 0.09259259
## 73       0 0.90740741 0.09259259
## 74       0 0.90740741 0.09259259
## 75       0 0.90740741 0.09259259
## 76       0 0.90740741 0.09259259
## 77       0 0.90740741 0.09259259
## 78       0 0.90740741 0.09259259
## 79       0 0.90740741 0.09259259
## 80       0 0.90740741 0.09259259
## 81       0 0.90740741 0.09259259
## 82       0 0.90740741 0.09259259
## 83       0 0.90740741 0.09259259
## 84       0 0.90740741 0.09259259
## 85       0 0.90740741 0.09259259
## 86       0 0.90740741 0.09259259
## 87       0 0.90740741 0.09259259
## 88       0 0.90740741 0.09259259
## 89       0 0.90740741 0.09259259
## 90       0 0.90740741 0.09259259
## 91       0 0.90740741 0.09259259
## 92       0 0.90740741 0.09259259
## 93       0 0.90740741 0.09259259
## 94       0 0.90740741 0.09259259
## 95       0 0.90740741 0.09259259
## 96       0 0.90740741 0.09259259
## 97       0 0.90740741 0.09259259
## 98       0 0.90740741 0.09259259
## 99       0 0.90740741 0.09259259
## 100      0 0.90740741 0.09259259
## 101      0 0.02173913 0.97826087
## 102      0 0.02173913 0.97826087
## 103      0 0.02173913 0.97826087
## 104      0 0.02173913 0.97826087
## 105      0 0.02173913 0.97826087
## 106      0 0.02173913 0.97826087
## 107      0 0.90740741 0.09259259
## 108      0 0.02173913 0.97826087
## 109      0 0.02173913 0.97826087
## 110      0 0.02173913 0.97826087
## 111      0 0.02173913 0.97826087
## 112      0 0.02173913 0.97826087
## 113      0 0.02173913 0.97826087
## 114      0 0.02173913 0.97826087
## 115      0 0.02173913 0.97826087
## 116      0 0.02173913 0.97826087
## 117      0 0.02173913 0.97826087
## 118      0 0.02173913 0.97826087
## 119      0 0.02173913 0.97826087
## 120      0 0.90740741 0.09259259
## 121      0 0.02173913 0.97826087
## 122      0 0.02173913 0.97826087
## 123      0 0.02173913 0.97826087
## 124      0 0.02173913 0.97826087
## 125      0 0.02173913 0.97826087
## 126      0 0.02173913 0.97826087
## 127      0 0.02173913 0.97826087
## 128      0 0.02173913 0.97826087
## 129      0 0.02173913 0.97826087
## 130      0 0.90740741 0.09259259
## 131      0 0.02173913 0.97826087
## 132      0 0.02173913 0.97826087
## 133      0 0.02173913 0.97826087
## 134      0 0.90740741 0.09259259
## 135      0 0.90740741 0.09259259
## 136      0 0.02173913 0.97826087
## 137      0 0.02173913 0.97826087
## 138      0 0.02173913 0.97826087
## 139      0 0.02173913 0.97826087
## 140      0 0.02173913 0.97826087
## 141      0 0.02173913 0.97826087
## 142      0 0.02173913 0.97826087
## 143      0 0.02173913 0.97826087
## 144      0 0.02173913 0.97826087
## 145      0 0.02173913 0.97826087
## 146      0 0.02173913 0.97826087
## 147      0 0.02173913 0.97826087
## 148      0 0.02173913 0.97826087
## 149      0 0.02173913 0.97826087
## 150      0 0.02173913 0.97826087
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
model3=randomForest(Species~.,data = iris)
table(predict(model3),iris$Species)
##             
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         47         4
##   virginica       0          3        46
table(predict(model),iris$Species)
##             
##              setosa versicolor virginica
##   setosa         50          0         0
##   versicolor      0         49         5
##   virginica       0          1        45