Install latest ckanR, dplyr and DT.
install.packages("devtools")
devtools::install_github("rstudio/DT")
devtools::install_github("hadley/dplyr")
devtools::install_github("ropensci/ckanr")
Save yourself specifying the URL with each ckanR call by setting a default url.
library(ckanr)
## Loading required package: DBI
ckanr::ckanr_setup(url="http://datos.imss.gob.mx/")
Reading the first dataset and the first resource of IMSS.gov.mx:
packages <- ckanr::package_list()
p1 <- ckanr::package_show(packages[[1]])
r1 <- ckanr::resource_show(p1$resources[[1]]$id)
# did that work? print the resulting objects
p1
## <CKAN Package> 76d40fe0-7077-4c2c-9422-ad2f925d316b
## Title: PDA 2017
## Creator/Modified: 2017-04-03T18:26:13 / 2017-04-11T12:38:05
## Resources (up to 5): PDA 2017 (31-Enero)
## Tags (up to 5):
## Groups (up to 5): group/poblacion-derechohabiente-adscrita-pda
r1
## <CKAN Resource> 41753dbd-bcf4-4307-9ad4-39a420a05ff5
## Name: PDA 2017 (31-Enero)
## Description: <p>Información al 31 de Enero, población derechohabiente adscrita.</p>
## Creator/Modified: Lun, 04/03/2017 - 18:27 / Date changed Lun, 04/03/2017 - 18:29
## Size: 108.68 MB
## Format: csv
Using the data retrieved by ckanR, you can now view the first dataset or download its first resource.
Reading a specific dataset:
p <- ckanr::package_show("asegurados-2013")
r <- ckanr::resource_show("57f8e388-7cad-4105-a5b0-6eae49f1e96e")
You can now read data from the package asegurados-2013, e.g. resource Asegurados 2013 (31-enero) into R. Note: As the CSV file is 259.74 MB, this may take a while, so we only read in the first 100 lines.
data <- read.csv(r$url, header=T, as.is=T, nrows = 100, sep="|")
dplyr::glimpse(data)
## Observations: 100
## Variables: 29
## $ cve_delegacion <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ cve_subdelegacion <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ cve_entidad <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ cve_municipio <chr> "A01", "A01", "A01", "A01", "A01", "A01", "...
## $ sector_economico_1 <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ sector_economico_2 <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ sector_economico_4 <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ tamaño_patron <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ sexo <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ rango_edad <chr> "E1", "E10", "E11", "E12", "E13", "E14", "E...
## $ rango_salarial <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,...
## $ asegurados <int> 204, 381, 232, 141, 126, 206, 181, 155, 60,...
## $ no_trabajadores <int> 204, 381, 232, 141, 126, 206, 181, 155, 60,...
## $ ta <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ teu <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tec <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tpu <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tpc <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ ta_sal <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ teu_sal <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tec_sal <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tpu_sal <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tpc_sal <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ masa_sal_ta <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ masa_sal_teu <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ masa_sal_tec <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ masa_sal_tpu <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ masa_sal_tpc <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ patrones <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
DT::datatable(data)