library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#Import Airbnb data
data = read.csv("~/Documents/Senior Year /ADE/FinalProject/airbnblisting.csv")
#Clean up data
data$price = lapply(data$price, function(x) as.integer(gsub("[,$]", "", x)))
data$host_is_superhost = gsub('t', 1, data$host_is_superhost, fixed = TRUE)
data$host_is_superhost = gsub('f', 0, data$host_is_superhost, fixed = TRUE)
data$host_is_superhost = as.integer(data$host_is_superhost)
data$host_has_profile_pic = gsub('t', 1, data$host_has_profile_pic, fixed = TRUE)
data$host_has_profile_pic = gsub('f', 0, data$host_has_profile_pic, fixed = TRUE)
data$host_has_profile_pic = as.integer(data$host_has_profile_pic)
data$host_identity_verified = gsub('t', 1, data$host_identity_verified, fixed = TRUE)
data$host_identity_verified = gsub('f', 0, data$host_identity_verified, fixed = TRUE)
data$host_identity_verified = as.integer(data$host_identity_verified)
data$is_location_exact = gsub('t', 1, data$is_location_exact, fixed = TRUE)
data$is_location_exact = gsub('f', 0, data$is_location_exact, fixed = TRUE)
data$is_location_exact = as.integer(data$is_location_exact)
data$instant_bookable = gsub('t', 1, data$instant_bookable, fixed = TRUE)
data$instant_bookable = gsub('f', 0, data$instant_bookable, fixed = TRUE)
data$instant_bookable = as.integer(data$instant_bookable)
data$neighbourhood_cleansed = as.factor(data$neighbourhood_cleansed)
data$neighbourhood_group_cleansed = as.factor(data$neighbourhood_group_cleansed)
data$accommodates = as.integer(data$accommodates)
data$bathrooms = as.numeric(data$bathrooms)
data$bedrooms = as.integer(data$bedrooms)
data$beds = as.factor(data$beds)
data$bed_type = as.factor(data$bed_type)
data$price = as.integer(data$price)
#narrrow to just Manhattan
data.manhattan= filter(data, neighbourhood_group_cleansed == "Manhattan", room_type == "Entire home/apt", property_type == "Apartment")
reg = lm(price ~ accommodates + bathrooms + bedrooms + neighbourhood_cleansed, data=data.manhattan)
graph
library(shiny)
library(devtools)
library(predictshine)
library(RCurl)
## Loading required package: bitops
library(httr)
set_config( config( ssl_verifypeer = 0L ) )
predictshine(reg,
page_title = 'How much should you price your listing?',
variable_descriptions = c('# of people you accommodate', "# of bathrooms", '# of bedrooms','Neighborhood'),
main = 'How much should you price your listing?',
xlab = 'Predicted price',
description = p('Based on the number of people you accommodate, the number of bathrooms, the number of bedrooms, and the neighborhood that your listing is located, this is the suggested price that you should put down'))
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize