x <- 3
(poly <- -1 * x^3 + 2*x^2 +2)
## [1] -7
\(\lim_{x\rightarrow 3} = -7\)
x <- -1
(poly <- -1 * x^2 + 2*x +1)
## [1] -2
\(\lim_{x\rightarrow -1} = -2\)
x <- -1 * pi/4
(poly <- -1/tan(x))
## [1] 1
\(\lim_{x\rightarrow \frac{-\pi}{4}} = 1\)
x <- 0
(poly <- 2*cos(2*x))
## [1] 2
\(\lim_{x\rightarrow 0} = 2\)
f_x <- function(x){
(-x+2)/(x^2+x+1)}
curve(f_x, -5, 5)
abline(h=0)
\(\lim_{x\rightarrow \infty} = 0\)
f_x <- function(x){
(3*x^3)/(2*x^2+3)}
curve(f_x, -5, 5)
abline(h=0)
\(\lim_{x\rightarrow \infty} = DNE\)
lh_lim <- -5 rh_lim <- -1*2^2-1 lh_lim; rh_lim; lh_lim==rh_lim
\(\lim_{x\rightarrow 2} = -5\)
lh_lim <- (0/2) + (3/2)
rh_lim <- -2*0
lh_lim; rh_lim; lh_lim==rh_lim
## [1] 1.5
## [1] 0
## [1] FALSE
\(\lim_{x\rightarrow 2} = DNE\)
Note: We did not do right or left hand limits this year so problems like 9 & 10 will not be on the test.
rh_lim <- 1^2 + 2*1
rh_lim
## [1] 3
\(\lim_{x\rightarrow 1} = 3\)
Note: If you treated this as a two sided limit, the type we learned. The limit would be 3 also.
lh_lim <- -1/2 + 1/2
lh_lim
## [1] 0
\(\lim_{x\rightarrow 1} = 0\)
Note: If you treated this as a two sided limit, the type we learned. The answer would be DNE.
Evaluate the following algebraically using the method taught in class
\[\lim_{x\rightarrow - \infty} \dfrac{x^4}{4x^2-1}= DNE\]
\[\lim_{x\rightarrow \infty} \dfrac{2x}{x+2}= 2\]
\[\lim_{x\rightarrow \infty} \dfrac{x^2}{x^2+9}= 1\]
\[\lim_{x\rightarrow \infty} -\dfrac{x^2}{x^2+9}= -1\]
Solve each inequaltiy, use a number line in your work.
curve(x^2+8*x+12, -8, 0)
abline(h=0)
\((-\infty, -2) \cup (-6, \infty)\)
curve(3*x^2 - 18*x + 24, -5, 5)
abline(h=0)
\([2, 4]\)
curve(x^2*(x-3)*(x+4), -5, 5)
abline(h=0)
\((-\infty, -4] \cup [0,0] \cup [3, \infty)\)
curve((x-3)/(x+4), -10, 10, ylim=c(-10,10))
abline(h=0)
\((-\infty, -4)\cup (3,\infty)\)
Find the horizontal asymptote by setting up a limit and solving it with the official method.
\[\lim_{x\rightarrow \infty}\frac{2x^3}{4x^2-1}=DNE\]
\[\lim_{x\rightarrow \infty}\frac{x}{x^2+2x+2}=0\]
\[\frac{2}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}\] \[A(x+1) + B(x-1) = 2\] \[(A+B)x + (A-B) = 0x+2\]
This becomes: \[\begin{cases} A+B=0\\A - B=2\end{cases}\] \(A=1\) and \(B=-1\) so \[\frac{2}{(x-1)(x+1)} = \frac{1}{x-1} - \frac{1}{x+1}\]
\[\frac{24}{x^2-4} = \frac{A}{x-2} + \frac{B}{x+2}\] \[A(x+2) + B(x-2) = 24\] \[(A+B)x + (2A-2B) = 0x+24\]
This becomes: \[\begin{cases} A+B=0\\2A-2B=24\end{cases}\] \(A=6\) and \(B=-6\) so \[\frac{24}{x^2-4} = \frac{6}{x-2} - \frac{6}{x+2}\]
\[\frac{x^3+47}{x^3+x^2} = 1+\frac{-x^2+47}{x^3+x^2} = 1 + \frac{A}{x^2}+\frac{B}{x}+\frac{C}{x+1}\] \[(x^3+x^2) + A(x+1) + Bx(x+1) + Cx^2= x^3+47\] \[x^3 +(1+B+C)x^2+(A+B)x + 47 = x^3+0x^2+0x+47\]
This becomes: \[\begin{cases} x^3=x^3\\1+B+C=0\\A+B=0\\A=47\end{cases}\] \(A=47\), \(B=-47\), and \(C=46\) so \[\frac{x^3+47}{x^3+x^2} = 1 + \frac{47}{x^2}-\frac{47}{x}+\frac{46}{x+1}\]
Find \[\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\] where…
\[\lim_{h \rightarrow 0} =-4x\]
\[\lim_{h \rightarrow 0} =-4\]
\(f(x)=-5x^2-3\) \[\lim_{h \rightarrow 0} =-10x\]
Graph \[x=y^2-8y+11\]