# ML-lab-10-1: MNIST Data revisit - AdamOptimizer & xavier_initializer
# Source: https://youtu.be/6CCXyfvubvY?list=PLlMkM4tgfjnLSOjrEJN31gZATbcj_MpUm
library(tensorflow)
library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag(): dplyr, stats
# The MNIST Data
datasets <- tf$contrib$learn$datasets
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE)
## Let us take a look at the data.
### MNIST data image 28 by 28 -> 1 by 784 vector
str(mnist$train$images)
## num [1:55000, 1:784] 0 0 0 0 0 0 0 0 0 0 ...
sample <- matrix(1 - mnist$train$images[6,], nrow = 28, byrow = T)
mat.plot <- function(mat, ...){
image(t(apply(mat, 2, rev)),
col = gray((0:255)/255),
axes = F, ...)
}
mat.plot(sample)

### X is a placeholder for the 1 by 784 images vector
tf$reset_default_graph()
X <- tf$placeholder(tf$float32, shape(NULL, 784L))
y <- tf$placeholder(tf$float32, shape(NULL, 10L))
### Use three layers! with Xavier initializer
## Layer 1
W1 <- tf$get_variable("W1", shape = shape(784L, 256L),
initializer = tf$contrib$layers$xavier_initializer())
b1 <- tf$Variable(tf$random_normal(shape = shape(256L)))
L1 <- tf$nn$relu(tf$matmul(X, W1) + b1)
## Layer2
W2 <- tf$get_variable("W2", shape = shape(256L, 256L),
initializer = tf$contrib$layers$xavier_initializer())
b2 <- tf$Variable(tf$random_normal(shape = shape(256L)))
L2 <- tf$nn$relu(tf$matmul(L1, W2) + b2)
## Layer3
W3 <- tf$get_variable("W3", shape = shape(256L, 10L),
initializer = tf$contrib$layers$xavier_initializer())
b3 <- tf$Variable(tf$random_normal(shape = shape(10L)))
### Hypothesis
y_hat <- tf$nn$softmax(tf$matmul(L2, W3) + b3)
cost <- tf$nn$softmax_cross_entropy_with_logits(
logits = tf$matmul(L2, W3) + b3,
labels = y
) %>% tf$reduce_mean()
optimizer <- tf$train$AdamOptimizer(learning_rate = 0.01)
train <- optimizer$minimize(cost)
init <- tf$global_variables_initializer()
sess <- tf$Session()
sess$run(init)
train_epochs <- 15L
batch_size <- 100L
set.seed(1111)
for (epoch in 1:train_epochs) {
avg_cost <- 0
total_batch <- as.integer(mnist$train$num_examples/ batch_size)
for (j in 1:total_batch){
batches <- mnist$train$next_batch(100L)
batch_xs <- batches[[1]]
batch_ys <- batches[[2]]
c <- sess$run(c(cost, train),
feed_dict = dict(X = batch_xs, y = batch_ys))
avg_cost <- avg_cost + sum(c[[1]] / total_batch)
}
cat("epoch ", epoch,": cost = ", avg_cost, "\n")
}
## epoch 1 : cost = 0.2964457
## epoch 2 : cost = 0.134402
## epoch 3 : cost = 0.1171631
## epoch 4 : cost = 0.1142568
## epoch 5 : cost = 0.09770956
## epoch 6 : cost = 0.09143206
## epoch 7 : cost = 0.0853945
## epoch 8 : cost = 0.08875549
## epoch 9 : cost = 0.07875951
## epoch 10 : cost = 0.08048865
## epoch 11 : cost = 0.07378422
## epoch 12 : cost = 0.07657826
## epoch 13 : cost = 0.06857288
## epoch 14 : cost = 0.05955466
## epoch 15 : cost = 0.05942473
## check the ACC
correct_prediction <- tf$equal(tf$argmax(y_hat, 1L), tf$argmax(y, 1L))
accuracy <- tf$reduce_mean(tf$cast(correct_prediction, tf$float32))
sess$run(accuracy, feed_dict=dict(X = mnist$test$images, y = mnist$test$labels))
## [1] 0.9675002
## Tuned parameter
# W <- sess$run(c(W1, W2, W3))
# b <- sess$run(c(b1, b2, b3))
## Let us take a look at the data.
check <- function(num){
sample <- matrix(1 - mnist$test$images[num,], nrow = 28, byrow = TRUE)
pred <- sess$run(tf$argmax(y_hat, 1L), feed_dict=dict( X = matrix(mnist$test$images[num,], nrow = 1),
y = matrix(mnist$test$labels[num,], nrow = 1) ))
mat.plot(sample, main = paste("predicted as", pred))
}
check( 151 )

# Close session
sess$close()