library(ggplot2)
library(scales)
death <- data.frame(
year=7:17,
shisha=c(10679,9942,9640,9211,9006,9066,8747,8326,7702,7358,6871))
ggplot(subset(death, year>=13), aes(x=year, y=shisha-6000)) +
geom_bar(stat="identity", col="black", fill="grey") +
scale_y_continuous(
breaks = seq(0, 4000, by = 1000),
labels = comma(seq(6000,10000, by=1000))
) +
xlab("") +
ylab("人数") +
ggtitle("事故発生後24時間いないの交通事故者数") +
theme_bw(base_family="Osaka")
ggplot(subset(death, year>=13), aes(x=year, y=shisha)) +
geom_bar(stat="identity", col="black", fill="grey") +
scale_y_continuous(label=comma) +
xlab("") +
ylab("人数") +
ggtitle("事故発生後24時間いないの交通事故者数") +
theme_bw(base_family="Osaka")
ggplot(death, aes(x=year, y=shisha)) +
geom_bar(col="black", fill="grey", stat="identity") +
scale_y_continuous(label=comma) +
xlab("") +
ylab("人数") +
ggtitle("事故発生後24時間いないの交通事故者数") +
theme_bw(base_family="Osaka")
ggplot(death, aes(x=year, y=shisha)) +
geom_line() +
geom_point(shape=1, size=2) +
scale_y_continuous(label=comma) +
xlab("") +
ylab("人数") +
ggtitle("事故発生後24時間いないの交通事故者数") +
theme_bw(base_family="Osaka")
ggplot(death, aes(x=year, y=shisha)) +
geom_bar(col="black", fill="grey", stat="identity") +
scale_y_continuous(label=comma) +
xlab("") +
ylab("") +
ggtitle("事故発生後24時間いないの交通事故者数") +
theme_bw(base_family="Osaka")
library(reshape2)
death2 <- read.csv("death2.csv", fileEncoding="shift_jis")
death2_melt <- melt(death2, id.vars = "year")
ggplot(death2_melt, aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("人数") +
ggtitle("飲酒有無別交通事故死亡者数") +
theme_bw(base_family="Osaka")
ggplot(subset(death2_melt,variable!="交通事故死亡者数"), aes(x=as.factor(year), y=value, fill=variable, group=variable)) +
geom_bar(stat="identity",position="fill") +
scale_y_continuous(label=percent) +
xlab("") +
ylab("割合") +
ggtitle("飲酒有無別交通事故死亡者数比率") +
theme_bw(base_family="Osaka")
ggplot(subset(death2_melt, variable=="飲酒あり.第1当事者."), aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("人数") +
ggtitle("飲酒有交通事故死亡者数") +
theme_bw(base_family="Osaka")
death2_2 <- death2[,c(1,3,4)]
death2_2$baseline <- mean(death2_2[1:7,3] / death2_2[1:7,2]) * death2_2[,2]
death2_melt2 <- melt(death2_2[,c(1,3,4)], id.vars = "year")
death2_melt2$variable <- as.character(death2_melt2$variable)
death2_melt2$variable <- ifelse(death2_melt2$variable=="baseline", "改正なし想定", death2_melt2$variable)
ggplot(death2_melt2, aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("人数") +
ggtitle("改正による交通事故死亡者数減少効果") +
theme_bw(base_family="Osaka")
death2_melt3 <- rbind(death2_melt2, subset(death2_melt, variable=="飲酒なし.第1当事者."))
ggplot(death2_melt3, aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("人数") +
ggtitle("改正による交通事故死亡者数減少効果") +
theme_bw(base_family="Osaka")
### 飲酒有無別交通事故数 推移
jiko <- read.csv("inshu_jiko.csv", fileEncoding="shift_jis")
jiko_melt <- melt(jiko, id.vars = "year")
ggplot(jiko_melt, aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("事故数") +
ggtitle("飲酒有無別交通事故数") +
theme_bw(base_family="Osaka")
ggplot(subset(jiko_melt, variable=="飲酒あり"), aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("人数") +
ggtitle("飲酒有交通事故数") +
theme_bw(base_family="Osaka")
death_rate <- read.csv("death_rate.csv", fileEncoding="shift_jis")
death_rate_melt <- melt(death_rate, id.vars = "year")
ggplot(death_rate_melt, aes(x=as.factor(year), y=value, col=variable, shape=variable, group=variable)) +
geom_line() +
geom_point() +
scale_y_continuous(label=comma, limits=c(0,NA)) +
xlab("") +
ylab("死亡事故率") +
ggtitle("飲酒有無別死亡事故率(%)") +
theme_bw(base_family="Osaka")
death.rate <- data.frame(
year=8:17,
rate=(death$shisha[-1] - death$shisha[-nrow(death)]) / death$shisha[-1]
)
ggplot(death.rate, aes(x=year, y=rate)) +
geom_line() +
geom_point(shape=1, size=2) +
geom_abline(intercept=0, slope=0, lty=2) +
ggtitle("事故発生後24時間いないの交通事故者数の増減率") +
theme_bw(base_family="Osaka")
death.rate$rate.scaled <- scale(death.rate$rate)
ggplot(death.rate, aes(x=year, y=rate.scaled)) +
geom_line() +
geom_point(shape=1, size=2) +
geom_abline(intercept=0, slope=0, lty=2) +
geom_abline(intercept=1.96, slope=0, lty=2) +
geom_abline(intercept=-1.96, slope=0, lty=2) +
ylim(-2.2, 2.2) +
ggtitle("基準化された増減率") +
theme_bw(base_family="Osaka")
death.rate$gmean <-
exp(sum(log(1+death.rate$rate))/length(death.rate$rate))
death.rate$rate.gscaled <-
(death.rate$rate+1 - death.rate$gmean) / sqrt(sum((death.rate$rate+1 - death.rate$gmean)^2)/(nrow(death.rate)-1))
ggplot(death.rate, aes(x=year, y=rate.gscaled)) +
geom_line() +
geom_point(shape=1, size=2) +
geom_abline(intercept=0, slope=0, lty=2) +
geom_abline(intercept=1.96, slope=0, lty=2) +
geom_abline(intercept=-1.96, slope=0, lty=2) +
ylim(-2.2, 2.2) +
ggtitle("基準化された増減率") +
theme_bw(base_family="Osaka")
大学生は漢字が苦手
| グループ | 検定の合格率 |
|---|---|
| 中学1年生 | 78.5% |
| 高校1年生 | 59.0% |
| 大学1年生 | 39.8% |
| 上場企業新入社員 | 60.7% |
kanji <- data.frame(
group=factor(c("中学1","高校1","大学1","新入社員"),
levels=c("中学1","高校1","大学1","新入社員")),
rate=c(78.5, 59.0, 39.8, 60.7))
ggplot(kanji, aes(x=group, y=rate)) +
geom_bar(col="black",fill="grey",stat="identity") +
ylim(0,100) +
xlab("グループ") +
ylab("検定の合格率") +
theme_bw(base_family="Osaka")
インフルエンザワクチン:昨冬の効果 有効率27%
flu <- data.frame(
year=c(13, 14, 15, 16),
vac=c(0.3, 1.9, 1.7, 4.8),
n.vac=c(1.2, 5.9, 2.4, 6.6))
flu <- transform(flu, eff=round( (n.vac-vac)/n.vac*100, 1))
flu
## year vac n.vac eff
## 1 13 0.3 1.2 75.0
## 2 14 1.9 5.9 67.8
## 3 15 1.7 2.4 29.2
## 4 16 4.8 6.6 27.3
ggplot(flu, aes(x=year, y=eff)) +
geom_line() +
geom_point() +
xlab("有効率") +
ylab("") +
ylim(0,80) +
theme_bw(base_family="Osaka")
ggplot(flu, aes(x=year, y=eff)) +
geom_bar(col="black",fill="grey",stat="identity") +
xlab("有効率") +
ylab("") +
ylim(0,80) +
theme_bw(base_family="Osaka")
flu2 <- data.frame(
vac=c(14364-696, 696, 14364),
n.vac=c(3101-206, 206, 3101))
row.names(flu2) <- c("fine","sick","sum")
flu2
## vac n.vac
## fine 13668 2895
## sick 696 206
## sum 14364 3101
flu2.ratio <- flu2["sick",] / flu2["sum",] * 100
row.names(flu2.ratio) <- c("ratio")
flu2.ratio
## vac n.vac
## ratio 4.845 6.643
prop.test(as.numeric(flu2["sick",]),
as.numeric(flu2["sum",]))
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: as.numeric(flu2["sick", ]) out of as.numeric(flu2["sum", ])
## X-squared = 16.46, df = 1, p-value = 4.967e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.027614 -0.008337
## sample estimates:
## prop 1 prop 2
## 0.04845 0.06643
prop.test(as.numeric(flu2["sick",]),
as.numeric(flu2["sum",]),
p=c(0.05, 0.05))
##
## 2-sample test for given proportions with continuity correction
##
## data: as.numeric(flu2["sick", ]) out of as.numeric(flu2["sum", ]), null probabilities c(0.05, 0.05)
## X-squared = 17.97, df = 2, p-value = 0.0001253
## alternative hypothesis: two.sided
## null values:
## prop 1 prop 2
## 0.05 0.05
## sample estimates:
## prop 1 prop 2
## 0.04845 0.06643