Lazy: A new approach to non-standard evalution

This document outlines a new approach to non-standard evaluation (NSE). There are three key ideas:

lazy()

The key tool that makes this approach possible is lazy(), an equivalent to substitute() that captures both expression and environment associated with a function argument:

library(lazy)
f <- function(x = a - b) {
  lazy(x)
}
f()
#> <lazy>
#>   code: a - b
#>   env: <environment: 0x7fc192537ae8>
f(a + b)
#> <lazy>
#>   code: a + b
#>   env: <environment: R_GlobalEnv>

As a complement to eval(), the lazy package provides lazy_eval() that uses the environment associated with the lazy object:

a <- 10
b <- 1
lazy_eval(f())
#> [1] 9
lazy_eval(f(a + b))
#> [1] 11

The second argument to lazy eval is a list or data frame where names should be looked up first:

lazy_eval(f(), list(a = 1))
#> [1] 0

lazy_eval() also works with formulas, since they contain the same information as a lazy object: an expression (only the RHS is used by convention) and an environment:

lazy_eval(~ a + b)
#> [1] 11
h <- function(i) {
  ~ 10 + i
}
lazy_eval(h(1))
#> [1] 11

Standard evaluation

Whenever we need a function that does non-standard evaluation, always write the standard evaluation version first. For example, let’s implement our own version of subset():

subset2_ <- function(df, condition) {
  r <- lazy_eval(condition, df)
  r <- r & !is.na(r)
  df[r, , drop = FALSE]
} 

subset2_(mtcars, lazy(mpg > 31))
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1
subset2_(mtcars, ~mpg > 31)
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1

To make the NSE version as flexible as possible, use as.lazy() to coerce input into a lazy object. In general, this requires an environment, and the parent.frame() is a reasonable guess. This allows the user to pass in quoted calls and strings. This is a little risky but provides useful scaffolding when learning how to do NSE the right way.

subset2_ <- function(df, condition) {
  condition <- as.lazy(condition, parent.frame())
  r <- lazy_eval(condition, df)
  r <- r & !is.na(r)
  df[r, , drop = FALSE]
} 

subset2_(mtcars, quote(mpg > 31))
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1
subset2_(mtcars, "mpg > 31")
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1

Non-standard evaluation

With the standard evaluation version in hand, writing the standard evaluation version is easy. We just use lazy() to capture the unevaluated expression and corresponding environment:

subset2 <- function(df, condition) {
  subset2_(df, lazy(condition))
}
subset2(mtcars, mpg > 31)
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1

This standard evaluation escape hatch is very important because it allows us to implement different NSE approaches. For example, we could create a subsetting function that finds all rows where a variable is above a threshold:

above_threshold <- function(df, var, threshold) {
  cond <- substitute(var > threshold)
  subset2_(df, cond)
}
above_threshold(mtcars, mpg, 31)
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1

The use of substitute() is appropriate here because var is a variable name and threshold is a value - the environment in which they are defined is not important.

Scoping

Because lazy() captures the environment associated with the function argument, we automatically avoid a subtle scoping bug present in subset():

x <- 31
f1 <- function(...) {
  x <- 30
  subset(mtcars, ...)
}
# Uses 30 instead of 31
f1(mpg > x)
#>     mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7  66 4.08 2.200 19.47  1  1    4    1
#> 19 30.4   4 75.7  52 4.93 1.615 18.52  1  1    4    2
#> 20 33.9   4 71.1  65 4.22 1.835 19.90  1  1    4    1
#> 28 30.4   4 95.1 113 3.77 1.513 16.90  1  1    5    2

f2 <- function(...) {
  x <- 30
  subset2(mtcars, ...)
}
# Correctly uses 31
f2(mpg > x)
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1

lazy() has another advantage over substitute() - by default, it follows promises across function invovations. This simplifies the casual use of NSE.

x <- 31
g1 <- function(comp) {
  x <- 30
  subset(mtcars, comp)
}
g1(mpg > x)
#> Error: object 'mpg' not found
g2 <- function(comp) {
  x <- 30
  subset2(mtcars, comp)
}
g2(mpg > x)
#>     mpg cyl disp hp drat    wt  qsec vs am gear carb
#> 18 32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1
#> 20 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1

Note that g2() doesn’t have a standard-evaluation escape hatch, so it’s not suitable for programming with in the same way that subset2_() is. See vignettes("chained-promises") for more details on this topic.