#Read in data
d = read.csv("cat_bias.csv") %>%
filter(Include == 1) %>%
select(-instructions, -other_notes)
es = compute_es(
d$participant_design, d$x_1,d$x_2, d$x_dif, d$SD_1, d$SD_2,
d$SD_dif, d$n_1, d$n_2, d$t, d$f, d$d, d$d_var, d$corr,
d$corr_imputed, d$r, d$study_ID, d$expt_num,
d$special_cases_measures, d$contrast_sampa)
d = cbind(d, es)
Currently I have 80 effect sizes coded.
res <- rma(yi=d_calc, vi = d_var_calc, data=d,
slab=paste(short_cite,expt_num), method="REML")
### set up forest plot (with 2x2 table counts added; rows argument is used
### to specify exactly in which rows the outcomes will be plotted)
forest(res,
xlab="Effect size", mlab="", psize=1)
d %>%
filter(instruction_code != "best_match") %>%
filter(instruction_code != "same_kind") %>%
mutate(mean_month = mean_age_1/30.43,
label_present = as.factor(label_present)) %>%
ggplot(aes(x = mean_month, y = d_calc,color = label_present)) +
facet_wrap(~instruction_code, scales = "free") +
geom_jitter(aes(size = n_1), alpha = 0.5) +
geom_hline(yintercept = 0, linetype = "dashed", color = "black") +
xlim(10, 65) +
scale_size_continuous(guide = FALSE) +
geom_smooth(method = "lm", aes(group = label_present)) +
ylab("Effect size (taxonomic bias)") +
theme_bw()
Difficult to compare effect sizes across tasks directions. For the conditions that we have the same directions for both with and without label (“another”), it looks like there’s a developmental trend of taxonomic bias when children are given a label. But….could this trend just be an artifact of learning the word “another”?
Data from Wordbank.
ap = read.csv("another_produces.csv") %>%
rename(prop_know = another,
mean_month = age)
au = read.csv("another_understands.csv") %>%
rename(prop_know = another,
mean_month = age)
another = rbind(ap, au)
ggplot(another,
aes(x = mean_month, y = prop_know, color = measure)) +
scale_size_continuous(guide = FALSE) +
xlim(10, 65) +
ylim(0,1) +
ylab("prop kids knowing the word `another` ") +
geom_smooth(method = "lm") +
theme_bw()