2D Euler Equation:
\[ \begin{aligned} \rho \left( \partial _{t}+\boldsymbol{v}\cdot \nabla \right) \boldsymbol{v} +\nabla p &=\rho \boldsymbol{g}\\ \left( \partial _{t}+\boldsymbol{v}\cdot \nabla \right) \rho &=0\\ \nabla \cdot \boldsymbol{v} &=0 \end{aligned} \] \((x,y)\in \mathbb{T}\times \mathbb{R}\), \(\boldsymbol{v}=\left(v^{x}, v^{y}\right)=\nabla ^{\perp }\psi =\left(-\partial _{y},\partial _{x}\right)\psi\), \(\boldsymbol{g}=(0,-g)\).
Stationary solution: Shear flow \(\boldsymbol{v}_{0}=(U(y),0)\), \(\rho=\rho _{0}(y)\).
Consider Couette flow with exponential stratification: \(U(y)=Ry\), \(\rho _{0}(y)=Ae^{-\beta y}\), where \(A, \beta, R \in \mathbb{R}^+\).