4/25/2017

Introduction

2D Euler Equation:

\[ \begin{aligned} \rho \left( \partial _{t}+\boldsymbol{v}\cdot \nabla \right) \boldsymbol{v} +\nabla p &=\rho \boldsymbol{g}\\ \left( \partial _{t}+\boldsymbol{v}\cdot \nabla \right) \rho &=0\\ \nabla \cdot \boldsymbol{v} &=0 \end{aligned} \] \((x,y)\in \mathbb{T}\times \mathbb{R}\), \(\boldsymbol{v}=\left(v^{x}, v^{y}\right)=\nabla ^{\perp }\psi =\left(-\partial _{y},\partial _{x}\right)\psi\), \(\boldsymbol{g}=(0,-g)\).

Stationary solution: Shear flow \(\boldsymbol{v}_{0}=(U(y),0)\), \(\rho=\rho _{0}(y)\).

Consider Couette flow with exponential stratification: \(U(y)=Ry\), \(\rho _{0}(y)=Ae^{-\beta y}\), where \(A, \beta, R \in \mathbb{R}^+\).

Introduction

After Linearization, \[ \begin{aligned} \boxed{-\beta \left[ \partial _{x}-\left( \partial _{t}+y\partial _{x}\right) \partial _{y}\right] \psi} +(\partial _{t}+y\partial _{x})\omega &=B^{2}\partial _{x}T\\ (\partial _{t}+y\partial _{x})T&=\partial _{x}\psi\\ \omega &=-\Delta \psi \end{aligned} \] If \(R \neq 0\), denote \(B^{2}=\frac{\beta g}{R^{2}}\) to be the Richardson number, \(T=\frac{R\rho }{\beta \rho _{0}}\) be the relative density perturbation, \(\omega =-\Delta \psi\) be the vorticity perturbation. A scaling in time is also applied here.

If \(\beta\) is small, by applying Boussinesq Approximation, the boxed term should be omitted.

Goal

Our goal is to determine the optimal decay rate of \(\|\boldsymbol{v}\|_{L^2}\) and \(\|T\|_{L^2}\). Results for Boussinesq Case: (For the original equation, an exponential weight is added, and the same decay rate is obtained)

Richardson Number \(B^2=0\) \(B^2\in (0,\frac{1}{4})\) \(B^2=\frac{1}{4}\) \(B^2\in (\frac{1}{4},\infty)\)
\(P_{\neq 0}v^x\) Bounded \(t^{-\frac{1}{2}+\nu}\) \(t^{-\frac{1}{2}}\log t\) \(t^{-\frac{1}{2}}\)
\(v^y\) \(t^{-1}\) \(t^{-\frac{3}{2}+\nu}\) \(t^{-\frac{3}{2}}\log t\) \(t^{-\frac{3}{2}}\)
\(P_{\neq 0}T\) Conserved \(t^{-\frac{1}{2}+\nu}\) \(t^{-\frac{1}{2}}\log t\) \(t^{-\frac{1}{2}}\)

where \(\nu^2 = {\frac{1}{4} - B^2}\).

Why is this hard?

It can be written in a Hamiltonian structure.

\[ \begin{align} (\partial _t + y \partial _x) \omega &= B^2 T_x,\\ (\partial _t + y \partial _x) T &= \psi _x. \end{align} \] \[ \begin{align} \partial _t \omega &= \partial _x \left(-y\omega + B^2 T \right),\\ \partial _t T &= \partial _x \left( -yT + \psi \right). \end{align} \] Define \[ \begin{equation} J = \partial _x \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) , L = \left( \begin{array}{cc} (-\Delta ) ^{-1} & -y \\ -y & B ^2 \end{array} \right) \end{equation} \] Then

Why is this hard?

\[ \frac{d}{dt} \left( \begin{array}{c} \omega \\ T \end{array} \right) = JL \left( \begin{array}{c} \omega \\ T \end{array} \right) \] Two invariants are \[ \begin{aligned} H \left( \omega, T \right) &= \frac{1}{2} \left\langle L \left( \begin{array}{c} \omega \\ T \end{array} \right), \left( \begin{array}{c} \omega \\ T \end{array} \right)\right\rangle \\&= \iint _{\mathbb{R} ^2 _+} \left( \frac{1}{2}\left| \nabla \psi \right| ^2 + \frac{1}{2} B ^2 T ^2 - y \omega T \right) \mathrm{d}x \mathrm{d}y\\ P(\omega, T) &= \frac{1}{2} \left\langle \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left( \begin{array}{c} \omega \\ T \end{array} \right), \left( \begin{array}{c} \omega \\ T \end{array} \right)\right\rangle\\ &= \iint _{\mathbb{R} ^2 _+} \omega T - \frac{1}{2} \beta T ^2 \mathrm{d}x \mathrm{d}y \end{aligned} \]

Solution (with Boussinesq)

Shear Coordinates

Define \(\left( z,y\right) =\left(x-ty,y\right)\). Denote \[ \begin{aligned} f(t;z,y) &=\omega (t;z+ty,y)=\omega (t;x,y), \\ \phi (t;z,y) &=\psi (t;z+ty,y)=\psi (t;x,y), \\ \tau (t;z,y) &=T(t;z+ty,y)=T(t;x,y). \end{aligned} \] Then \[ \begin{aligned} \partial _{t}f =\left( \partial _{t}+y\partial _{x}\right) \omega =B^{2}\partial _{x}T =B^{2}\partial _{z}\tau, \\ \partial _{t}\tau =\left( \partial _{t}+y\partial _{x}\right) T=\partial _{x}\psi =\partial _{z}\phi ,\\ \left[ \partial _{zz}+(\partial _{y}-t\partial _{z})^{2}\right] \phi=\psi _{xx}+\psi _{yy}=-\omega =-f. \end{aligned} \]

Solution

Fourier Transform \((z,y)\rightarrow(k, \eta)\)

\[ \begin{aligned} \partial _{t}f &=B^{2}\partial _{z}\tau, \\ \partial _{t}\tau &=\partial _{z}\phi ,\\ \left[ \partial _{zz}+(\partial _{y}-t\partial _{z})^{2}\right] \phi &=-f \end{aligned} \] turn into \[ \begin{aligned} \hat{f}_{t}=B^{2}(ik)\hat{\tau},\\ \hat{\tau}_{t}=(ik)\hat{\phi},\\ \left[ (ik)^{2}+(i\eta -ikt)^{2}\right] \hat{\phi}=-\hat{f}. \end{aligned} \]

Solution

For fixed \(k\neq 0\) and \(\eta\), define \(s=t-\frac{\eta }{k}\) and \(s_{0}=-\frac{\eta }{k}\). Then we obtain a second order linear ODE for \(\hat{\phi}\): \[ (1+s^{2})\hat{\phi}_{tt}+4s\hat{\phi}_{t}+(2+B^{2})\hat{\phi}=0 \] It has two linearly independent solutions \[ g_{1}(s)=F\left( \frac{3}{4}-\frac{\nu }{2},\frac{3}{4}+\frac{\nu }{2};\frac{1}{2};-s^{2}\right)\\ g_{2}(s)=sF\left( \frac{5}{4}-\frac{\nu }{2},\frac{5}{4}+\frac{\nu }{2};\frac{3}{2};-s^{2}\right) . \] Recall that \(\nu^2 = {\frac{1}{4} - B^2}\).

Solution

Therefore, the general solutions to the equation can be written as \[ \hat{\phi}=C_{1}g_{1}(s)+C_{2}g_{2}(s) \] where \(C_{1},C_{2}\) are some constants depending only on \((k,\eta )\).

Hypergeometric Functions

Assume \(c\) is not an integer. Euler's hypergeometric differential equation \[ \begin{aligned} z(1-z)f^{\prime \prime }(z)+\left[c-(a+b+1)z\right]f^{\prime }(z)-abf(z)=0 \end{aligned} \] has two linear independent solutions \[ \begin{aligned} f_1(z)&=F(a,b;c;z), \\ f_2(z)&=z^{1-c}F(1+a-c, 1+b-c; 2-c; z). \end{aligned} \] Here \(F\) is the Gauss's hypergeometric function. It is defined as a power series.

Hypergeometric Functions

\[ \begin{equation*} F(a,b;c;z)=\sum_{n=0}^{\infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}}\frac{z^{n}}{n!} \end{equation*} \] for \(|z|<1\), where \[ (x)_{n}=\left\{ \begin{array}{lc} 1 & n=0, \\ x(x+1)\cdots (x+n-1) & n>0. \end{array} \right. \] Its value \(F(z)\) for \(|z|\geq 1\) is defined by analytic continuation. Thus if \(c,z\in \mathbb{R}\), and \(a,b\) are conjugate, then \(F(a,b;c;z)\) is also real.

Solution

\[ \hat{\phi}=C_{1}g_{1}(s)+C_{2}g_{2}(s) \] The coefficients \(C_{1},C_{2}\) are determined by the initial conditions \(\psi (0;x,y)\) and \(T(0;x,y)\). Let \(\hat{\psi}^{0}(k,\eta ),\hat{T}^{0}(k,\eta )\) be Fourier transforms of \(\psi (0;x,y)\) and \(T(0;x,y)\).

It can be obtained that \[ \hat{\phi}(0;k,\eta )=\hat{\phi}^{0}(k,\eta )=\hat{\psi}^{0}(k,\eta ).\\ \hat{\phi}_{t}(0;k,\eta )=\frac{1}{1+s_{0}^{2}}\left( \frac{iB^{2}}{k}\hat{T}^{0}-2s_{0}\hat{\psi}^{0}\right) . \]

Solution

Hence the coefficients are determined by \[ \begin{aligned} C_{1}(k,\eta )=&\frac{1}{\Delta }\left[ g_{2}^{\prime }(s_{0})+\frac{2s_{0}}{ 1+s_{0}^{2}}g_{2}(s_{0})\right] \hat{\psi}^{0}(k,\eta )\\&+\frac{1}{\Delta } \left[ -\frac{iB^{2}}{1+s_{0}^{2}}g_{2}(s_{0})\right] \frac{\hat{T} ^{0}(k,\eta )}{k}, \\ C_{2}(k,\eta )=&\frac{1}{\Delta }\left[ -g_{1}^{\prime }(s_{0})-\frac{2s_{0}}{ 1+s_{0}^{2}}g_{1}(s_{0})\right] \hat{\psi}^{0}(k,\eta )\\&+\frac{1}{\Delta } \left[ \frac{iB^{2}}{1+s_{0}^{2}}g_{1}(s_{0})\right] \frac{\hat{T} ^{0}(k,\eta )}{k}, \end{aligned} \]

Solution

where \[ \Delta(s_0) =g_{1}(s_{0})g_{2}^{\prime }(s_{0})-g_{1}^{\prime }(s_{0})g_{2}(s_{0})=\frac{1}{\left( 1+s_{0}^{2}\right) ^{2}} \] is strictly positive for all \(s_{0}\in \mathbb{R}\). Thus the solution is given explicitly by \[ \hat{\phi}(t;k,\eta )=C_{1}(k,\eta )g_{1}(s)+C_{2}(k,\eta )g_{2}(s). \] Accordingly, \[ \begin{aligned} \hat{\tau}(t;k,\eta ) =&-\frac{ik}{B^{2}}\left( (1+s^{2})\hat{\phi}_{t}+2s\hat{\phi}\right) \end{aligned} \]

Decay Rate

Now we will use the solution formula obtained in the last section to obtain the inviscid decay estimates, for solutions of the linearized equations under Boussinesq approximation.

By expanding \(g_{1}(s)\), \(g_{2}(s),\) \(g_{1}^{\prime }(s_{0})\), \(g_{2}^{\prime }(s_{0})\) at infinity, we obtain the following asymptotics. When \(B^2 \neq \frac{1}{4}\),

Decay Rate

\[ \begin{aligned} g_{1}(s) =& \sqrt{\pi }\left[ \frac{\Gamma (\nu )}{\Gamma (-\frac{1}{4}+\frac{ \nu }{2})\Gamma (\frac{3}{4}+\frac{\nu }{2})}s^{-\frac{3}{2}+\nu } \right.\\&\left. +\frac{ \Gamma (-\nu )}{\Gamma (-\frac{1}{4}-\frac{\nu }{2})\Gamma (\frac{3}{4}- \frac{\nu }{2})}s^{-\frac{3}{2}-\nu }\right] +O\left( |s|^{-\frac{7}{2} +Re(\nu )}\right) , \\ g_{2}(s) =& \frac{\sqrt{\pi }}{2}\left[ \frac{\Gamma (\nu )}{\Gamma (\frac{1}{4} +\frac{\nu }{2})\Gamma (\frac{5}{4}+\frac{\nu }{2})}s^{-\frac{3}{2}+\nu } \right.\\&\left.+ \frac{\Gamma (-\nu )}{\Gamma (\frac{1}{4}-\frac{\nu }{2})\Gamma (\frac{5}{4}- \frac{\nu }{2})}s^{-\frac{3}{2}-\nu }\right] +O\left( |s|^{-\frac{5}{2} +Re(\nu )}\right) , \end{aligned} \]

Decay Rate for \(0 < B^2 < \frac{1}{4}\)

In short, \[ \begin{aligned} g_{1,2}(s) &\sim s^{-\frac{3}{2}+Re(\nu) }\\ g_{1,2}'(s) &\sim s^{-\frac{5}{2}+Re(\nu) }\\ \end{aligned} \] Here "\(\sim\)" means of the same order as \(s \rightarrow \infty\). Thus for \(0 < B^2 < \frac{1}{4}\), \(\nu>0\), \[ \begin{aligned} |g_{1,2}(s)| \lesssim & \left\langle s\right\rangle ^{-\frac{3}{2}+\nu },\\ \left\vert C_{1,2}(k,\eta )\right\vert \lesssim &\left\langle s_{0}\right\rangle ^{\frac{3}{2}+\nu }\left( \left\vert \hat{\psi} ^{0}(k,\eta )\right\vert +\frac{\left\vert \hat{T}^{0}(k,\eta )\right\vert }{ \left\langle s_{0}\right\rangle |k|}\right) , \end{aligned} \]

Decay Rate for \(0 < B^2 < \frac{1}{4}\)

Therefore \[ \begin{aligned} \left\vert \hat{\phi}(t;k,\eta )\right\vert =&\left\vert C_{1}(k,\eta)g_{1}(s)+C_{2}(k,\eta )g_{2}(s)\right\vert \\ \lesssim &\left\langle s\right\rangle ^{-\frac{3}{2}+\nu }\left\langle s_{0}\right\rangle ^{\frac{3}{2}+\nu }\left( \left\vert \hat{\psi} ^{0}(k,\eta )\right\vert +\frac{\left\vert \hat{T}^{0}(k,\eta )\right\vert }{ \left\langle s_{0}\right\rangle |k|}\right) . \end{aligned} \] And hence \[ \begin{aligned} v^{x}(t;x,y) =&-\partial _{y}\psi (t;x,y)=(-\partial _{y}+t\partial _{z})\phi (t;z,y), \\ v^{y}(t;x,y) =&\partial _{x}\psi (t;x,y)=\partial _{z}\phi (t;z,y), \end{aligned} \] By Fourier transform, we have

Decay Rate for \(0 < B^2 < \frac{1}{4}\)

\[ \begin{aligned} \left\vert \hat{v}^{x}\left( t;k,\eta \right) \right\vert &=\left\vert iks \hat{\phi}(t;k,\eta )\right\vert \\&\leq \left\langle s\right\rangle ^{-\frac{1 }{2}+\nu }\left\langle s_{0}\right\rangle ^{\frac{3}{2}+\nu }\left( \left\vert k\right\vert \left\vert \hat{\psi}^{0}(k,\eta )\right\vert +\frac{ \left\vert \hat{T}^{0}(k,\eta )\right\vert }{\left\langle s_{0}\right\rangle }\right) ,\\ \left\vert \hat{v}^{y}\left( t;k,\eta \right) \right\vert &= \left\vert ik\hat{ \phi}(t;k,\eta )\right\vert \\&\leq \left\langle s\right\rangle ^{-\frac{3}{2} +\nu }\left\langle s_{0}\right\rangle ^{\frac{3}{2}+\nu }\left( \left\vert k\right\vert \left\vert \hat{\psi}^{0}(k,\eta )\right\vert +\frac{\left\vert \hat{T}^{0}(k,\eta )\right\vert }{\left\langle s_{0}\right\rangle }\right) ,\\ \left\vert \hat{\tau}(t;k,\eta )\right\vert & \lesssim \left\langle s\right\rangle ^{-\frac{1}{2}+\nu }\left\langle s_{0}\right\rangle ^{\frac{3}{2}+\nu }\left( |k|\left\vert \hat{\psi} ^{0}(k,\eta )\right\vert +\frac{\left\vert \hat{T}^{0}(k,\eta )\right\vert }{ \left\langle s_{0}\right\rangle }\right) . \end{aligned} \]

Decay Rate for \(0 < B^2 < \frac{1}{4}\)

It has the form that \[ \begin{equation} \left\vert \hat{g}(t;k,\eta )\right\vert \lesssim \left\langle s\right\rangle ^{-a}\left\langle s_{0}\right\rangle ^{b}\left\vert k\right\vert ^{c}\left\vert \hat{h}(k,\eta )\right\vert ,\text{ }0\neq k\in \mathbb{Z}, \eta \in \mathbb{R}. \end{equation} \] We show that whenever this holds, provided \(g\) and \(h\) belongs to the proper space, \[ \begin{equation*} \left\Vert P_{\neq 0}g\left( t\right) \right\Vert _{L^{2}\left( \mathbb{ T\times R}\right) }\lesssim \left\langle t\right\rangle ^{-a}\left\Vert h\right\Vert _{H_{x}^{c}H_{y}^{b+a}\left( \mathbb{ T\times R}\right)}. \end{equation*} \]

Decay Rate for \(0 < B^2 < \frac{1}{4}\)

Thus we have \[ \begin{aligned} \Vert P_{\neq 0}v^{x}\Vert _{L^{2}} \lesssim &\left\langle t\right\rangle ^{-\frac{1}{2}+\nu }\left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{2}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{1}}\right) , \\ \Vert v^{y}\Vert _{L^{2}} \lesssim& \left\langle t\right\rangle ^{-\frac{3}{ 2}+\nu }\left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{3}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{2}}\right) ,\\ \Vert P_{\neq 0}T\Vert _{L^{2}}=\Vert P_{\neq 0}\tau \Vert _{L^{2}}\lesssim& \left\langle t\right\rangle ^{-\frac{ 1}{2}+\nu }\left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{2}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{1}}\right) . \end{aligned}% \]

Decay Rate for \(B^{2}>\frac{1}{4}\)

In the case \(B^{2}>\frac{1}{4}\), \(\nu =\sqrt{\frac{1}{4}-B^{2}}\) is pure imaginary. Then we have asymptotics \[ \begin{align*} |g_{1,2}(s)| \lesssim &\left\langle s\right\rangle ^{-\frac{3}{2}},\ |g_{1,2}^{\prime }(s_{0})|\lesssim \left\langle s_{0}\right\rangle ^{- \frac{5}{2}}. \end{align*} \] Therefore, \[ \begin{align*} \Vert P_{\neq 0}v^{x}\Vert _{L^{2}} \lesssim &\left\langle t\right\rangle ^{-\frac{1}{2}}\left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{2}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{1}}\right) , \\ \Vert v^{y}\Vert _{L^{2}} \lesssim &\left\langle t\right\rangle ^{-\frac{3}{ 2}}\left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{3}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{2}}\right) , \\ \Vert P_{\neq 0}T\Vert _{L^{2}} \lesssim &\left\langle t\right\rangle ^{- \frac{1}{2}}\left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{2}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{1}}\right) . \end{align*} \]

Decay Rate for \(B^{2}=\frac{1}{4}\)

This critical case stands out because of its different expansion at infinity. When \(B^{2}=\frac{1}{4}\), \(\nu =0\), \[ \begin{align*} g_{1}(s) &= F\left( \frac{3}{4},\frac{3}{4};\frac{1}{2};-s^{2}\right) \\&= \frac{ 2\sqrt{\pi }}{\Gamma \left( -\frac{1}{4}\right) \Gamma \left( \frac{3}{4} \right) }s^{-\frac{3}{2}}\log \left( s\right) +O\left( |s|^{- \frac{3}{2}}\right) , \\ g_{2}(s) &= sF\left( \frac{5}{4},\frac{5}{4};\frac{3}{2};-s^{2}\right) \\&= \frac{\sqrt{\pi }}{\Gamma \left( \frac{1}{4}\right) \Gamma \left( \frac{5}{4} \right) }s^{-\frac{3}{2}}\log \left( s\right) +O\left( |s|^{- \frac{3}{2}}\right) , \end{align*} \]

Decay Rate for \(B^{2}=\frac{1}{4}\)

Thus we obtain the following estimates \[ \begin{align*} \left\vert g_{1,2}(s)\right\vert \lesssim \left\langle s\right\rangle ^{- \frac{3}{2}}\left\langle \log \left\langle s\right\rangle \right\rangle ,\ \left\vert g_{1,2}^{\prime }(s_{0})\right\vert \lesssim &\left\langle s_{0}\right\rangle ^{-\frac{5}{2}}\left\langle \log \left\langle s_{0}\right\rangle \right\rangle \end{align*} \] and as a result \[ \begin{align*} \left\vert C_{1,2}(k,\eta )\right\vert \lesssim &\left\langle s_{0}\right\rangle ^{\frac{3}{2}}\left\langle \log \left\langle s_{0}\right\rangle \right\rangle \left( \left\vert \hat{\psi}^{0}(k,\eta )\right\vert +\frac{\left\vert \hat{T}^{0}(k,\eta )\right\vert }{ \left\langle s_{0}\right\rangle |k|}\right) \end{align*} \] Therefore, we have \[ \begin{align*} \left\vert \hat{\phi}(t;k,\eta )\right\vert \lesssim &\left\langle s\right\rangle ^{-\frac{3}{2}}\left\langle s_{0}\right\rangle ^{\frac{3}{2}}\left\langle \log \left\langle s\right\rangle \right\rangle \left\langle \log \left\langle s_{0}\right\rangle \right\rangle \left( \left\vert \hat{\psi}^{0}(k,\eta )\right\vert +\frac{\left\vert \hat{T}^{0}(k,\eta )\right\vert }{ \left\langle s_{0}\right\rangle |k|}\right) , \end{align*} \]

Decay Rate for \(B^{2}=\frac{1}{4}\)

It can be shown by some kindergarden calculus (which is omitted here) that \[ \begin{equation*} \left\langle s\right\rangle ^{-a}\left\langle s_{0}\right\rangle ^{\frac{3}{2% }}\left\langle \log \left\langle s\right\rangle \right\rangle \left\langle \log \left\langle s_{0}\right\rangle \right\rangle \lesssim \left<t\right>^{-a}\left\langle \log \left\langle t\right\rangle \right\rangle \left\langle s_{0}\right\rangle ^{\frac{3}{2}+a }, \end{equation*}% \] for all \(a \geq \frac{1}{2}\). Thus we get \[ \begin{align*} \Vert P_{\neq 0}v^{x}\Vert _{L^{2}} \lesssim &\left\langle t\right\rangle ^{-\frac{1}{2}} \left\langle \log \left\langle t\right\rangle \right\rangle \left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{2}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{1}}\right) , \\ \Vert v^{y}\Vert _{L^{2}} \lesssim &\left\langle t\right\rangle ^{-\frac{3}{ 2}} \left\langle \log \left\langle t\right\rangle \right\rangle \left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{3}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{2}}\right) ,\\ \Vert P_{\neq 0}T\Vert _{L^{2}} \lesssim& \left\langle t\right\rangle ^{-\frac{ 1}{2}}\left\langle \log \left\langle t\right\rangle \right\rangle \left( \Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{2}}+\Vert T^{0}\Vert _{L_{x}^{2}H_{y}^{1}}\right) . \end{align*} \]

Conclusion

Richardson Number \(B^2\in (0,\frac{1}{4})\) \(B^2=\frac{1}{4}\) \(B^2\in (\frac{1}{4},\infty)\)
\(P_{\neq 0}v^x\) \(t^{-\frac{1}{2}+\nu}\) \(t^{-\frac{1}{2}}\log t\) \(t^{-\frac{1}{2}}\)
\(v^y\) \(t^{-\frac{3}{2}+\nu}\) \(t^{-\frac{3}{2}}\log t\) \(t^{-\frac{3}{2}}\)
\(P_{\neq 0}T\) \(t^{-\frac{1}{2}+\nu}\) \(t^{-\frac{1}{2}}\log t\) \(t^{-\frac{1}{2}}\)

Recall \(B^2 = \frac{\beta g}{R^2}\), \(\nu = \sqrt{\frac{1}{4}-B^2}\).

The Case \(B^2 = 0\)

\(B^2=0\) means \(\beta =0\), i.e. no stratification. We get \[ \begin{align*} \left( \partial _{t}+Ry\partial _{x}\right) \Delta \psi =&-\partial _{x}\left( \frac{\rho }{\rho _{0}}\right) g, \\ \left( \partial _{t}+Ry\partial _{x}\right) \left( \frac{\rho }{\rho _{0}} \right) =&0. \end{align*}% \] Hence the density is conserved. Similarly, by using a sheared coordinate, \[ \begin{align*} f(t;z,y) =&\omega (t;z+ty,y)=\omega (t;x,y), \\ \phi (t;z,y) =&\psi (t;z+ty,y)=\psi (t;x,y), \\ \tau (t;z,y) =&\frac{\rho }{\rho _{0}}(t;z+ty,y)=\frac{\rho }{\rho _{0}} (t;x,y). \end{align*} \]

The Case \(B^2 = 0\)

Then \[ \begin{equation*} \partial _{t}f(t;z,y)=g\partial _{z}\tau (t;z,y),\ \partial _{t}\tau (t;z,y)=0. \end{equation*} \] So \[ \begin{align*} \hat{\tau}(t; k, \eta) =&\hat{\tau}(0; k, \eta), \\ \hat{f}\left( t; k, \eta\right) =&\hat{\omega}^{0}(k, \eta)+tikg\hat{\rho ^{0}}\left( k, \eta\right) ,\\ \hat{\phi}(t;k,\eta ) =&\frac{1}{k^{2}\left<s\right>^2 } \hat{f}\left( t;\eta ,k\right) \end{align*} \] where \(\omega (0;x,y)=\omega ^{0}(x,y),\ \frac{\rho }{\rho _{0}}(0;x,y)=\rho ^{0}\left( x,y\right)\).

The Case \(B^2 = 0\)

Thus we have estimates, \[ \begin{align*} \left\vert \hat{\phi}(t;k,\eta )\right\vert \lesssim \left\langle s\right\rangle ^{-2}\left\langle s_{0}\right\rangle ^{2}\left\vert \hat{\psi}^{0}(k,\eta )\right\vert +|t|\frac{1}{\left\vert k\right\vert }\left\langle s\right\rangle ^{-2}\left\vert \hat{\rho} ^{0}(k,\eta )\right\vert.\\ \left\vert \hat{v}^{x}\left( t;k,\eta \right) \right\vert \lesssim \left\langle s\right\rangle ^{-1}\left\langle s_{0}\right\rangle ^{2}\left\vert k\right\vert \left\vert \hat{\psi}^{0}(k,\eta )\right\vert +|t|\left\langle s\right\rangle ^{-1}\left\vert \hat{\rho}^{0}(k,\eta )\right\vert ,\\ \left\vert \hat{v}^{y}\left( t;k,\eta \right) \right\vert \lesssim \left\langle s\right\rangle ^{-2}\left\langle s_{0}\right\rangle ^{2}\left\vert k\right\vert \left\vert \hat{\psi}^{0}(k,\eta )\right\vert +|t|\left\langle s\right\rangle ^{-2}\left\vert \hat{\rho}^{0}(k,\eta )\right\vert . \end{align*} \] By Lemma , we get \[ \begin{align*} \Vert P_{\neq 0}v^{x}\Vert _{L^{2}}\lesssim \Vert \rho ^{0}\Vert _{L_{x}^{2}H_{y}^{1}}+\left\langle t\right\rangle ^{-1}\Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{3}},\\ \Vert v^{y}\Vert _{L^{2}}\lesssim \left\langle t\right\rangle ^{-1}\Vert \rho ^{0}\Vert _{L_{x}^{2}H_{y}^{2}}+\left\langle t\right\rangle ^{-2}\Vert \psi ^{0}\Vert _{H_{x}^{1}H_{y}^{4}}. \end{align*} \] For \(\rho ^{0}=0\), i.e. constant density, this agrees with Lin and Zeng (2011) for the homogeneous fluids.

Notes for \(B^2 = \infty\)

When there is no shear, i.e. \(R=0\), \(B^{2}=\infty\), the governing equations become \[ \begin{equation*} \partial _{t}\Delta \psi =-\partial _{x}\left( \frac{\rho }{\rho _{0}} \right) g,\ \ \ \ \ \ \partial _{t}\left( \frac{\rho }{\rho _{0}}\right) =\beta \partial _{x}\psi . \end{equation*} \] Denote \(T=\frac{\rho }{\beta \rho _{0}(y)},\) then \[ \begin{equation} \Delta \psi _{t}=-\partial _{x}T\beta g, \ \ \ \ \ \ \partial _{t}T=\partial _{x}\psi . \end{equation} \] Multiplying by \(\psi\) and then integrating by parts, we get the following invariant \[ \begin{equation*} \frac{\mathrm{d}}{\mathrm{d}t}\left( \beta g\iint T^{2}\mathrm{d}x \mathrm{d}y+\iint \left\vert \nabla \psi \right\vert ^{2}\mathrm{d}x \mathrm{d}y\right) =0. \end{equation*} \]

Notes for \(B^2 = \infty\)

This shows that in the \(L^{2}\) norm, the perturbations of velocity and density are Liapunov stable but do not decay. However, the \(L^{\infty }\) norms decay due to the dispersive effects. Denote \(N^{2}=\beta g\) to be the squared Buoyancy frequency. By Fourier transform \((x,y)\rightarrow (k,\eta )\), \[ \begin{align} \left( (i\eta )^{2}+(ik)^{2}\right) \hat{\psi} _{t}&=-(ik)N^{2}\hat{T},\\ \hat{T}_{t}&=(ik)\hat{\psi }. \end{align}% \] Combining them, we get \[ \begin{equation*} \frac{d^{2}}{dt^{2}}\hat{\psi}=-\lambda ^{2}\hat{\psi}, \end{equation*} \] where \({\lambda ^{2}(k,\eta )=\frac{k^{2}N^{2}}{k^{2}+\eta ^{2}}}\).

Notes for \(B^2 = \infty\)

This is a dispersive equation. By estimation on \(L^\infty\) norm, it can shown that \[ \begin{align*} \Vert P_{\neq 0}v^{x}\Vert _{L_{x}^{2}L_{y}^{\infty }} \lesssim &|t|^{- \frac{1}{3}}\left( \Vert \psi ^{0}\Vert _{H_{x}^{3/2}H_{y}^{9/2}}+\Vert \psi ^{0}\Vert _{H_{x}^{3/2}W_{y}^{1,1}} \right.\\&\left. +\Vert T^{0}\Vert _{H_{x}^{1/2}H_{y}^{9/2}}+\Vert T^{0}\Vert _{H_{x}^{1/2}W_{y}^{1,1}}\right) ,\\ \Vert v^{y}\Vert _{L_{x}^{2}L_{y}^{\infty }} \lesssim &|t|^{-\frac{1}{3} }\left( \Vert \psi ^{0}\Vert _{H_{x}^{5/2}H_{y}^{7/2}}+\Vert \psi ^{0}\Vert _{H_{x}^{5/2}L_{y}^{1}} \right.\\&\left. +\Vert T^{0}\Vert _{H_{x}^{3/2}H_{y}^{7/2}}+\Vert T^{0}\Vert _{H_{x}^{3/2}L_{y}^{1}}\right) .\\ \Vert P_{\neq 0}T\Vert _{L_{x}^{2}L_{y}^{\infty }} \lesssim& |t|^{-\frac{1}{3} }\left( \Vert \psi ^{0}\Vert _{H_{x}^{5/2}H_{y}^{9/2}}+\Vert \psi ^{0}\Vert _{H_{x}^{5/2}W_{y}^{1,1}} \right.\\&\left. +\Vert T^{0}\Vert _{H_{x}^{3/2}H_{y}^{7/2}}+\Vert T^{0}\Vert _{H_{x}^{3/2}L_{y}^{1}}\right) . \end{align*} \]

Notes for half-space

Now I am working on the equation in the \(y>0\) half space, with Dirichlet boundary condition, although I have not obtained any good results yet.

There are some results in the literature. For \(B^2 > \frac{1}{4}\) there are infinitely many pure imaginary eigen values. Hence no decay is possible in this case. It is still unclear about \(B^2 < \frac{1}{4}\), though it is shown that one or zero imaginary eigenvalue exists in this case.

Pointwise boundedness is proved by Dikki. He used Laplace transform to deal with the problem.

We are still looking for \(L^2\) stability or asymptotic stability.

Thank you for listening!