N para cada sexo/plumaje

table(flomel2.5$sexo.plum)
## 
## hembra-hembra  hembra-macho   macho-macho 
##            12             8            19


Statistica

Correlacion entre variables

round(cor(flomel2.5[,-1],use="complete.obs"),2)
##                  Peso Ala.sin.aplanar rectriz.externa largo.cola.
## Peso             1.00            0.21            0.09        0.23
## Ala.sin.aplanar  0.21            1.00            0.66        0.69
## rectriz.externa  0.09            0.66            1.00        0.77
## largo.cola.      0.23            0.69            0.77        1.00
## Ancho.nar.f      0.15            0.20           -0.04        0.21
## Alto.nar.f       0.20            0.37            0.20        0.28
## Largo.f         -0.14           -0.27           -0.30       -0.12
## Curvatura       -0.12           -0.19           -0.45       -0.36
## tarso            0.41            0.40            0.12        0.40
##                 Ancho.nar.f Alto.nar.f Largo.f Curvatura tarso
## Peso                   0.15       0.20   -0.14     -0.12  0.41
## Ala.sin.aplanar        0.20       0.37   -0.27     -0.19  0.40
## rectriz.externa       -0.04       0.20   -0.30     -0.45  0.12
## largo.cola.            0.21       0.28   -0.12     -0.36  0.40
## Ancho.nar.f            1.00       0.17    0.31      0.13  0.42
## Alto.nar.f             0.17       1.00    0.06      0.06  0.18
## Largo.f                0.31       0.06    1.00      0.05 -0.17
## Curvatura              0.13       0.06    0.05      1.00  0.11
## tarso                  0.42       0.18   -0.17      0.11  1.00

Analisis de cluster K-means (calcula cual es el # de grupos mas probable)

## *** : The Hubert index is a graphical method of determining the number of clusters.
##                 In the plot of Hubert index, we seek a significant knee that corresponds to a 
##                 significant increase of the value of the measure i.e the significant peak in Hubert
##                 index second differences plot. 
## 
## *** : The D index is a graphical method of determining the number of clusters. 
##                 In the plot of D index, we seek a significant knee (the significant peak in Dindex
##                 second differences plot) that corresponds to a significant increase of the value of
##                 the measure. 
##  
## All 39 observations were used. 
##  
## ******************************************************************* 
## * Among all indices:                                                
## * 8 proposed 2 as the best number of clusters 
## * 3 proposed 3 as the best number of clusters 
## * 1 proposed 4 as the best number of clusters 
## * 6 proposed 5 as the best number of clusters 
## * 2 proposed 8 as the best number of clusters 
## * 3 proposed 10 as the best number of clusters 
## 
##                    ***** Conclusion *****                            
##  
## * According to the majority rule, the best number of clusters is  2 
##  
##  
## *******************************************************************

plot of chunk unnamed-chunk-6

##                
##                 pred Macho pred Hembra
##   hembra-hembra          0          12
##   hembra-macho           0           8
##   macho-macho           17           2

MEDIDAS QUE VARIAN ENTRE SEXOS/PLUMAJES:

MANOVA con todas las variables

#MANOVA##########
# str(flomel2.5)
fit <- manova(cbind(Peso,Ala.sin.aplanar,rectriz.externa,largo.cola.,Ancho.nar.f,
                    Alto.nar.f,Largo.f,Curvatura,tarso) ~ sexo.plum,flomel2.5)
summary(fit)
##           Df Pillai approx F num Df den Df Pr(>F)   
## sexo.plum  2  0.918     2.73     18     58  0.002 **
## Residuals 36                                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analisis univariados (no hay grafico o posthoc para las q no varian significativamente)

Ala sin aplanar

summary(anv<-aov(flomel2.5$Ala.sin.aplanar~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value  Pr(>F)    
## flomel2.5$sexo.plum  2   70.3    35.1    15.7 1.2e-05 ***
## Residuals           36   80.4     2.2                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anv, "flomel2.5$sexo.plum", ordered = TRUE)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
##     factor levels have been ordered
## 
## Fit: aov(formula = flomel2.5$Ala.sin.aplanar ~ flomel2.5$sexo.plum)
## 
## $`flomel2.5$sexo.plum`
##                               diff    lwr   upr  p adj
## hembra-hembra-hembra-macho 0.04167 -1.625 1.709 0.9979
## macho-macho-hembra-macho   2.71053  1.171 4.250 0.0004
## macho-macho-hembra-hembra  2.66886  1.322 4.016 0.0001
dev.off()
## null device 
##           1
boxplot(flomel2.5$Ala.sin.aplanar~flomel2.5$sexo.plum,main="Largo de ala",xlab="Sexo/plumaje",ylab="Largo de ala (mm)",col=sample(cols,1))

Peso

summary(anv<-aov(flomel2.5$Peso~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value Pr(>F)
## flomel2.5$sexo.plum  2   0.55   0.277    1.71    0.2
## Residuals           36   5.82   0.162
# boxplot(flomel2.5$Peso~flomel2.5$sexo.plum,main="Peso",xlab="Sexo/plumaje",ylab="Peso (g)")

Rectriz externa

summary(anv<-aov(flomel2.5$rectriz.externa~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value  Pr(>F)    
## flomel2.5$sexo.plum  2    194    97.1    28.2 4.2e-08 ***
## Residuals           36    124     3.4                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anv, "flomel2.5$sexo.plum", ordered = TRUE)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
##     factor levels have been ordered
## 
## Fit: aov(formula = flomel2.5$rectriz.externa ~ flomel2.5$sexo.plum)
## 
## $`flomel2.5$sexo.plum`
##                             diff     lwr   upr  p adj
## hembra-hembra-hembra-macho 1.354 -0.7149 3.423 0.2588
## macho-macho-hembra-macho   5.174  3.2638 7.085 0.0000
## macho-macho-hembra-hembra  3.820  2.1487 5.492 0.0000
boxplot(flomel2.5$rectriz.externa~flomel2.5$sexo.plum,main="Rectriz externa",xlab="Sexo/plumaje",ylab="Rectriz externa (mm)",col=sample(cols,1))

plot of chunk unnamed-chunk-10

Largo cola

summary(anv<-aov(flomel2.5$largo.cola.~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value  Pr(>F)    
## flomel2.5$sexo.plum  2    140    70.2      18 3.8e-06 ***
## Residuals           36    140     3.9                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anv, "flomel2.5$sexo.plum", ordered = TRUE)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
##     factor levels have been ordered
## 
## Fit: aov(formula = flomel2.5$largo.cola. ~ flomel2.5$sexo.plum)
## 
## $`flomel2.5$sexo.plum`
##                             diff     lwr   upr  p adj
## hembra-hembra-hembra-macho 1.792 -0.4105 3.994 0.1296
## macho-macho-hembra-macho   4.658  2.6245 6.691 0.0000
## macho-macho-hembra-hembra  2.866  1.0872 4.645 0.0010
boxplot(flomel2.5$largo.cola.~flomel2.5$sexo.plum,main="Largo de cola",xlab="Sexo/plumaje",ylab="Largo de cola (mm)",col=sample(cols,1))

plot of chunk unnamed-chunk-11

Alto narinas

summary(anv<-aov(flomel2.5$Alto.nar.f~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value Pr(>F)
## flomel2.5$sexo.plum  2  0.069  0.0346    1.01   0.38
## Residuals           36  1.240  0.0344
# boxplot(flomel2.5$Alto.nar.f~flomel2.5$sexo.plum,main="Alto narinas",xlab="Sexo/plumaje",ylab="Alto de las narinas (mm)")

Ancho narinas

summary(anv<-aov(flomel2.5$Ancho.nar.f~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value Pr(>F)
## flomel2.5$sexo.plum  2  0.055  0.0276    0.56   0.58
## Residuals           36  1.772  0.0492
# TukeyHSD(anv, "flomel2.5$sexo.plum", ordered = TRUE)

# boxplot(flomel2.5$Ancho.nar.f~flomel2.5$sexo.plum,main="Ancho narinas",xlab="Sexo/plumaje",ylab="Ancho de las narinas (mm)")

Culmen expuesto

summary(anv<-aov(flomel2.5$Largo.f~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value Pr(>F)  
## flomel2.5$sexo.plum  2   7.44    3.72     4.5  0.018 *
## Residuals           36  29.73    0.83                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anv, "flomel2.5$sexo.plum", ordered = TRUE)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
##     factor levels have been ordered
## 
## Fit: aov(formula = flomel2.5$Largo.f ~ flomel2.5$sexo.plum)
## 
## $`flomel2.5$sexo.plum`
##                               diff      lwr   upr  p adj
## hembra-macho-macho-macho   0.85699 -0.07921 1.793 0.0784
## hembra-hembra-macho-macho  0.88424  0.06517 1.703 0.0320
## hembra-hembra-hembra-macho 0.02725 -0.98663 1.041 0.9976
 boxplot(flomel2.5$Largo.f~flomel2.5$sexo.plum,main="Culmen expuesto",xlab="Sexo/plumaje",ylab="Culmen expuesto (mm)",col=sample(cols,1))

plot of chunk unnamed-chunk-14

Tarso

summary(anv<-aov(flomel2.5$tarso~flomel2.5$sexo.plum))
##                     Df Sum Sq Mean Sq F value Pr(>F)
## flomel2.5$sexo.plum  2  0.074  0.0370    0.63   0.54
## Residuals           36  2.102  0.0584
# boxplot(flomel2.5$tarso~flomel2.5$sexo.plum,main="Tarso",xlab="Sexo/plumaje",ylab="Tarso (mm)")