Exemplos de gráficos \(y=ax^{c}+b\)

par(mfrow=c(1,2))
par(pty="s")
x<-seq(0:100)
y<-x
plot(x, y,type="l",col="red",
  xlim = c( 10^0, 10^2),  ylim = c(10^0,10^2),
  xaxt="n", yaxt="n",  xlab="x",  ylab="y",xaxs="i",yaxs="i",asp=1,main="Linear")
axis(1, at=10^(0:2), labels=expression(10^0, 10^1, 10^2));axis(2, at=10^(0:2),las=1, labels=expression(10^0, 10^1, 10^2))
grid(NULL,NULL)
box(col="Black")
y<-x*2;lines(x,y,col="blue")
y<-x/2;lines(x,y,col="green")
legend("topright", cex=1,c("y=x","y=x*2","y=x/2"), col=c("red","blue","green"),lty=1)
#
y<-x
plot(x, y,type="l",col="red",
   log = "xy",
  xlim = c( 10^0, 10^2),  ylim = c(10^0,10^2),
  xaxt="n", yaxt="n",  xlab="x",  ylab="y",xaxs="i",yaxs="i",asp=1,main="LogLog")
axis(1, at=10^(0:2), labels=expression(10^0, 10^1, 10^2));axis(2, at=10^(0:2),las=1, labels=expression(10^0, 10^1, 10^2))
abline(h=outer((1:10),(10^(0:1))), col="#00000033", lty=2);abline(v=outer((1:10),(10^(0:1))), col="#00000033", lty=2)
y<-x*2;lines(x,y,col="blue")
y<-x/2;lines(x,y,col="green")
legend("topright", cex=1,c("y=x","y=x*2","y=x/2"), col=c("red","blue","green"),lty=1)

par(mfrow=c(1,2))
par(pty="s")
y<-x
plot(x, y,type="l",col="red",
     xlim = c( 10^0, 10^2),  ylim = c(10^0,10^2),
     xaxt="n", yaxt="n",  xlab="x",  ylab="y",xaxs="i",yaxs="i",asp=1,main="Linear")
axis(1, at=10^(0:2), labels=expression(10^0, 10^1, 10^2));axis(2, at=10^(0:2),las=1, labels=expression(10^0, 10^1, 10^2))
grid(NULL,NULL)
box(col="Black")
y<-x+10;lines(x,y,col="blue")
y<-x-10;lines(x,y,col="green")
legend("topright", cex=1,c("y=x","y=x+10","y=x-10"), col=c("red","blue","green"),lty=1)
#
y<-x
plot(x, y,type="l",col="red",
     log = "xy",
     xlim = c( 10^0, 10^2),  ylim = c(10^0,10^2),
     xaxt="n", yaxt="n",  xlab="x",  ylab="y",xaxs="i",yaxs="i",asp=1,main="LogLog")
axis(1, at=10^(0:2), labels=expression(10^0, 10^1, 10^2));axis(2, at=10^(0:2),las=1, labels=expression(10^0, 10^1, 10^2))
abline(h=outer((1:10),(10^(0:1))), col="#00000033", lty=2);abline(v=outer((1:10),(10^(0:1))), col="#00000033", lty=2)
y<-x+10;lines(x,y,col="blue")
y<-x-10;lines(x,y,col="green")
legend("topright", cex=1,c("y=x","y=x+10","y=x-10"), col=c("red","blue","green"),lty=1)

par(mfrow=c(1,2))
par(pty="s")
y<-x
plot(x, y,type="l",col="red",
     xlim = c( 10^0, 10^2),  ylim = c(10^0,10^2),
     xaxt="n", yaxt="n",  xlab="x",  ylab="y",xaxs="i",yaxs="i",asp=1,main="Linear")
axis(1, at=10^(0:2), labels=expression(10^0, 10^1, 10^2));axis(2, at=10^(0:2),las=1, labels=expression(10^0, 10^1, 10^2))
grid(NULL,NULL)
box(col="Black")
y<-x^2;lines(x,y,col="blue")
y<-x^(3);lines(x,y,col="green")
legend("topright", cex=1,c("y=x","y=x^2","y=x^3"), col=c("red","blue","green"),lty=1)
#
y<-x
plot(x, y,type="l",col="red",xlim = c( 10^0, 10^2),  ylim = c(10^0,10^2),log="xy",
     xaxt="n", yaxt="n",  xlab="x",  ylab="y",xaxs="i",yaxs="i",asp=1,main="LogLog")
axis(1, at=10^(0:2), labels=expression(10^0, 10^1, 10^2));axis(2, at=10^(0:2),las=1, labels=expression(10^0, 10^1, 10^2))
abline(h=outer((1:10),(10^(0:1))), col="#00000033", lty=2);abline(v=outer((1:10),(10^(0:1))), col="#00000033", lty=2)
y<-x^2;lines(x,y,col="blue")
y<-x^(3);lines(x,y,col="green")
legend("topright", cex=1,c("y=x","y=x^2","y=x^3"), col=c("red","blue","green"),lty=1)

                                                     Orlando Abril/2017
LS0tDQp0aXRsZTogIkxvZ0xvZyINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdA0KICBodG1sX2RvY3VtZW50OiBkZWZhdWx0DQogIHBkZl9kb2N1bWVudDogZGVmYXVsdA0KICB3b3JkX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCkV4ZW1wbG9zIGRlIGdy4WZpY29zICR5PWF4XntjfStiJA0KDQpgYGB7ciBmaWcud2lkdGg9MTMsIGZpZy5oZWlnaHQ9MTN9DQoNCnBhcihtZnJvdz1jKDEsMikpDQpwYXIocHR5PSJzIikNCng8LXNlcSgwOjEwMCkNCnk8LXgNCnBsb3QoeCwgeSx0eXBlPSJsIixjb2w9InJlZCIsDQogIHhsaW0gPSBjKCAxMF4wLCAxMF4yKSwgIHlsaW0gPSBjKDEwXjAsMTBeMiksDQogIHhheHQ9Im4iLCB5YXh0PSJuIiwgIHhsYWI9IngiLCAgeWxhYj0ieSIseGF4cz0iaSIseWF4cz0iaSIsYXNwPTEsbWFpbj0iTGluZWFyIikNCmF4aXMoMSwgYXQ9MTBeKDA6MiksIGxhYmVscz1leHByZXNzaW9uKDEwXjAsIDEwXjEsIDEwXjIpKTtheGlzKDIsIGF0PTEwXigwOjIpLGxhcz0xLCBsYWJlbHM9ZXhwcmVzc2lvbigxMF4wLCAxMF4xLCAxMF4yKSkNCmdyaWQoTlVMTCxOVUxMKQ0KYm94KGNvbD0iQmxhY2siKQ0KeTwteCoyO2xpbmVzKHgseSxjb2w9ImJsdWUiKQ0KeTwteC8yO2xpbmVzKHgseSxjb2w9ImdyZWVuIikNCmxlZ2VuZCgidG9wcmlnaHQiLCBjZXg9MSxjKCJ5PXgiLCJ5PXgqMiIsInk9eC8yIiksIGNvbD1jKCJyZWQiLCJibHVlIiwiZ3JlZW4iKSxsdHk9MSkNCiMNCnk8LXgNCnBsb3QoeCwgeSx0eXBlPSJsIixjb2w9InJlZCIsDQogICBsb2cgPSAieHkiLA0KICB4bGltID0gYyggMTBeMCwgMTBeMiksICB5bGltID0gYygxMF4wLDEwXjIpLA0KICB4YXh0PSJuIiwgeWF4dD0ibiIsICB4bGFiPSJ4IiwgIHlsYWI9InkiLHhheHM9ImkiLHlheHM9ImkiLGFzcD0xLG1haW49IkxvZ0xvZyIpDQpheGlzKDEsIGF0PTEwXigwOjIpLCBsYWJlbHM9ZXhwcmVzc2lvbigxMF4wLCAxMF4xLCAxMF4yKSk7YXhpcygyLCBhdD0xMF4oMDoyKSxsYXM9MSwgbGFiZWxzPWV4cHJlc3Npb24oMTBeMCwgMTBeMSwgMTBeMikpDQphYmxpbmUoaD1vdXRlcigoMToxMCksKDEwXigwOjEpKSksIGNvbD0iIzAwMDAwMDMzIiwgbHR5PTIpO2FibGluZSh2PW91dGVyKCgxOjEwKSwoMTBeKDA6MSkpKSwgY29sPSIjMDAwMDAwMzMiLCBsdHk9MikNCnk8LXgqMjtsaW5lcyh4LHksY29sPSJibHVlIikNCnk8LXgvMjtsaW5lcyh4LHksY29sPSJncmVlbiIpDQpsZWdlbmQoInRvcHJpZ2h0IiwgY2V4PTEsYygieT14IiwieT14KjIiLCJ5PXgvMiIpLCBjb2w9YygicmVkIiwiYmx1ZSIsImdyZWVuIiksbHR5PTEpDQpgYGANCg0KYGBge3IgZmlnLndpZHRoPTEzLCBmaWcuaGVpZ2h0PTEzfQ0KcGFyKG1mcm93PWMoMSwyKSkNCnBhcihwdHk9InMiKQ0KeTwteA0KcGxvdCh4LCB5LHR5cGU9ImwiLGNvbD0icmVkIiwNCiAgICAgeGxpbSA9IGMoIDEwXjAsIDEwXjIpLCAgeWxpbSA9IGMoMTBeMCwxMF4yKSwNCiAgICAgeGF4dD0ibiIsIHlheHQ9Im4iLCAgeGxhYj0ieCIsICB5bGFiPSJ5Iix4YXhzPSJpIix5YXhzPSJpIixhc3A9MSxtYWluPSJMaW5lYXIiKQ0KYXhpcygxLCBhdD0xMF4oMDoyKSwgbGFiZWxzPWV4cHJlc3Npb24oMTBeMCwgMTBeMSwgMTBeMikpO2F4aXMoMiwgYXQ9MTBeKDA6MiksbGFzPTEsIGxhYmVscz1leHByZXNzaW9uKDEwXjAsIDEwXjEsIDEwXjIpKQ0KZ3JpZChOVUxMLE5VTEwpDQpib3goY29sPSJCbGFjayIpDQp5PC14KzEwO2xpbmVzKHgseSxjb2w9ImJsdWUiKQ0KeTwteC0xMDtsaW5lcyh4LHksY29sPSJncmVlbiIpDQpsZWdlbmQoInRvcHJpZ2h0IiwgY2V4PTEsYygieT14IiwieT14KzEwIiwieT14LTEwIiksIGNvbD1jKCJyZWQiLCJibHVlIiwiZ3JlZW4iKSxsdHk9MSkNCiMNCnk8LXgNCnBsb3QoeCwgeSx0eXBlPSJsIixjb2w9InJlZCIsDQogICAgIGxvZyA9ICJ4eSIsDQogICAgIHhsaW0gPSBjKCAxMF4wLCAxMF4yKSwgIHlsaW0gPSBjKDEwXjAsMTBeMiksDQogICAgIHhheHQ9Im4iLCB5YXh0PSJuIiwgIHhsYWI9IngiLCAgeWxhYj0ieSIseGF4cz0iaSIseWF4cz0iaSIsYXNwPTEsbWFpbj0iTG9nTG9nIikNCmF4aXMoMSwgYXQ9MTBeKDA6MiksIGxhYmVscz1leHByZXNzaW9uKDEwXjAsIDEwXjEsIDEwXjIpKTtheGlzKDIsIGF0PTEwXigwOjIpLGxhcz0xLCBsYWJlbHM9ZXhwcmVzc2lvbigxMF4wLCAxMF4xLCAxMF4yKSkNCmFibGluZShoPW91dGVyKCgxOjEwKSwoMTBeKDA6MSkpKSwgY29sPSIjMDAwMDAwMzMiLCBsdHk9Mik7YWJsaW5lKHY9b3V0ZXIoKDE6MTApLCgxMF4oMDoxKSkpLCBjb2w9IiMwMDAwMDAzMyIsIGx0eT0yKQ0KeTwteCsxMDtsaW5lcyh4LHksY29sPSJibHVlIikNCnk8LXgtMTA7bGluZXMoeCx5LGNvbD0iZ3JlZW4iKQ0KbGVnZW5kKCJ0b3ByaWdodCIsIGNleD0xLGMoInk9eCIsInk9eCsxMCIsInk9eC0xMCIpLCBjb2w9YygicmVkIiwiYmx1ZSIsImdyZWVuIiksbHR5PTEpDQpgYGANCmBgYHtyIGZpZy53aWR0aD0xMywgZmlnLmhlaWdodD0xM30NCnBhcihtZnJvdz1jKDEsMikpDQpwYXIocHR5PSJzIikNCnk8LXgNCnBsb3QoeCwgeSx0eXBlPSJsIixjb2w9InJlZCIsDQogICAgIHhsaW0gPSBjKCAxMF4wLCAxMF4yKSwgIHlsaW0gPSBjKDEwXjAsMTBeMiksDQogICAgIHhheHQ9Im4iLCB5YXh0PSJuIiwgIHhsYWI9IngiLCAgeWxhYj0ieSIseGF4cz0iaSIseWF4cz0iaSIsYXNwPTEsbWFpbj0iTGluZWFyIikNCmF4aXMoMSwgYXQ9MTBeKDA6MiksIGxhYmVscz1leHByZXNzaW9uKDEwXjAsIDEwXjEsIDEwXjIpKTtheGlzKDIsIGF0PTEwXigwOjIpLGxhcz0xLCBsYWJlbHM9ZXhwcmVzc2lvbigxMF4wLCAxMF4xLCAxMF4yKSkNCmdyaWQoTlVMTCxOVUxMKQ0KYm94KGNvbD0iQmxhY2siKQ0KeTwteF4yO2xpbmVzKHgseSxjb2w9ImJsdWUiKQ0KeTwteF4oMyk7bGluZXMoeCx5LGNvbD0iZ3JlZW4iKQ0KbGVnZW5kKCJ0b3ByaWdodCIsIGNleD0xLGMoInk9eCIsInk9eF4yIiwieT14XjMiKSwgY29sPWMoInJlZCIsImJsdWUiLCJncmVlbiIpLGx0eT0xKQ0KIw0KeTwteA0KcGxvdCh4LCB5LHR5cGU9ImwiLGNvbD0icmVkIix4bGltID0gYyggMTBeMCwgMTBeMiksICB5bGltID0gYygxMF4wLDEwXjIpLGxvZz0ieHkiLA0KICAgICB4YXh0PSJuIiwgeWF4dD0ibiIsICB4bGFiPSJ4IiwgIHlsYWI9InkiLHhheHM9ImkiLHlheHM9ImkiLGFzcD0xLG1haW49IkxvZ0xvZyIpDQpheGlzKDEsIGF0PTEwXigwOjIpLCBsYWJlbHM9ZXhwcmVzc2lvbigxMF4wLCAxMF4xLCAxMF4yKSk7YXhpcygyLCBhdD0xMF4oMDoyKSxsYXM9MSwgbGFiZWxzPWV4cHJlc3Npb24oMTBeMCwgMTBeMSwgMTBeMikpDQphYmxpbmUoaD1vdXRlcigoMToxMCksKDEwXigwOjEpKSksIGNvbD0iIzAwMDAwMDMzIiwgbHR5PTIpO2FibGluZSh2PW91dGVyKCgxOjEwKSwoMTBeKDA6MSkpKSwgY29sPSIjMDAwMDAwMzMiLCBsdHk9MikNCnk8LXheMjtsaW5lcyh4LHksY29sPSJibHVlIikNCnk8LXheKDMpO2xpbmVzKHgseSxjb2w9ImdyZWVuIikNCmxlZ2VuZCgidG9wcmlnaHQiLCBjZXg9MSxjKCJ5PXgiLCJ5PXheMiIsInk9eF4zIiksIGNvbD1jKCJyZWQiLCJibHVlIiwiZ3JlZW4iKSxsdHk9MSkNCmBgYA0KDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBPcmxhbmRvIEFicmlsLzIwMTcNCg==