We determine whether to transform it using logarithm, plot the original and transformed time series, for each time series here.
Real Gross Private Domestic Investment
library(Quandl)
library(forecast)
library(urca)
Quandl.api_key("3fnnc4EE2uzFb1a44mAQ")
RGPI <- Quandl("FRED/GPDIC1", type="zoo")
plot(RGPI, type= "l",xlab= "Years", ylab="RGPI", main="Real Gross Private Domestic Investment", major.format="%Y Q%q")
lRGPI<-log(RGPI)
plot(lRGPI, type= "l",xlab= "Years", ylab="lRGPI", main="Log_Real Gross Private Domestic Investment", major.format="%Y Q%q")
dlRGPI<-diff(lRGPI)
plot(dlRGPI, type= "l", xlab= "Years", ylab="dlRGPI", main="First differences of Logarithm Real Gross Private Domestic Investment", major.format="%Y Q%q")
Logarithm data #ADF test
ur.df(dlRGPI,type="trend", selectlags="BIC")
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -9.6906 31.3137 46.964
summary(ur.df(dlRGPI))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.171899 -0.014841 0.006751 0.029644 0.216303
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.68294 0.07351 -9.290 <2e-16 ***
## z.diff.lag -0.09629 0.05975 -1.611 0.108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04763 on 275 degrees of freedom
## Multiple R-squared: 0.3836, Adjusted R-squared: 0.3792
## F-statistic: 85.58 on 2 and 275 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -9.29
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since -9.2895 < 2.58 -1.95 -1.62 ,we do not reject the null hypothesis of a unit root.Thus, there is a present of unit root in the Real Gross Private Domestic Investment.
dlRGPI.urkpss <- ur.kpss(dlRGPI, type="tau", lags="short")
summary(dlRGPI.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 5 lags.
##
## Value of test-statistic is: 0.0189
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 0.0188 < 0.119 0.146 0.176 0.216 ,we do not reject the null hypothesis of the stationary.Thus, the Real Gross Private Domestic Investment is stationary.
dlRGPI.urers1 <- ur.ers(dlRGPI, type="P-test", model="trend")
summary(dlRGPI.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 0.0905
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 0.09 < 3.96 5.62 6.89 ,we do not reject the null hypothesis.
S&P 500 Index
SP<- Quandl("YAHOO/INDEX_GSPC", type="zoo")
plot(SP, type= "l",xlab= "Years", ylab="SP", main="S&P 500 Index", major.format="%Y Q%q")
lSP<-log(SP)
plot(lSP, type= "l",xlab= "Years", ylab="lSP1", main="Log_S&P 500 Index", major.format="%Y Q%q")
Because this data is an index we prefer to perform tests on original data.
dlSP<-diff(lSP)
plot(dlSP, type= "l", xlab= "Years", ylab="dlSP", main="Difference of S&P 500 Index", major.format="%Y Q%q")
dlSP.urkpss <- ur.kpss(dlSP, type="tau", lags="short")
summary(dlSP.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 22 lags.
##
## Value of test-statistic is: 0.0067
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 0.0066 < 0.119 0.146 0.176 0.216 ,we do not reject the null hypothesis of the stationary.Thus, the S&P 500 Index is stationary.
dlSP.urers1 <- ur.ers(dlSP, type="P-test", model="trend")
summary(dlSP.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 6e-04
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 6e-04 < 3.96 5.62 6.89 ,we do not reject the null hypothesis.
Personal Consumption Expenditures: Chain-type Price Index
PCE <- Quandl("FRED/PCECTPI", type="zoo")
plot(PCE, type= "l",xlab= "Years", ylab="PCE", main="Personal Consumption Expenditures: Chain-type Price Index", major.format="%Y Q%q")
lPCE<-log(PCE)
plot(lPCE, type= "l",xlab= "Years", ylab="lPCE", main="Log-Personal Consumption Expenditures: Chain-type Price Index", major.format="%Y Q%q")
dlPCE<-diff(lPCE)
plot(dlPCE, type= "l", xlab= "Years 1947-2016", ylab="dlPCE", main="Log-change of Personal Consumption Expenditures: Chain-type Price Index")
dlPCE2<-diff(dlPCE)
plot(dlPCE2, type= "l", xlab= "Years 1947-2016", ylab="dlPCE2", main="Second Log-change of Personal Consumption Expenditures: Chain-type Price Index")
ur.df(dlPCE2)
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -16.7891
summary(ur.df(dlPCE2))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0242356 -0.0019792 0.0000568 0.0019421 0.0177823
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -1.54210 0.09185 -16.789 < 2e-16 ***
## z.diff.lag 0.22295 0.05784 3.855 0.000144 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.004185 on 274 degrees of freedom
## Multiple R-squared: 0.6521, Adjusted R-squared: 0.6495
## F-statistic: 256.7 on 2 and 274 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -16.7891
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since 16.7841 < -2.58 -1.95 -1.62 ,we do not reject the null hypothesis of a unit root. Thus there is a unit root in the Logarithm data
dlPCE2.urkpss <- ur.kpss(dlPCE2, type="tau", lags="short")
summary(dlPCE2.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 5 lags.
##
## Value of test-statistic is: 0.0169
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 0.0171 < 0.119 0.146 0.176 0.216 ,we do not reject the null hypothesis of the stationary.
dlPCE2.urers1 <- ur.ers(dlPCE2, type="P-test", model="trend")
summary(dlPCE2.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 1.0229
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 1.0291 < 3.96 5.62 6.89 ,we do not reject the null hypothesis.
10-Year Treasury Constant Maturity Rate
TCM<- Quandl("FRED/GS10", type="zoo")
plot(TCM, type= "l",xlab= "Years", ylab="SP", main="10-Year Treasury Constant Maturity Rate", major.format="%Y Q%q")
lTCM<-log(TCM)
plot(lTCM, type= "l",xlab= "Years", ylab="lSP1", main="Log_10-Year Treasury Constant Maturity Rate", major.format="%Y Q%q")
dTCM<-diff(TCM)
plot(dTCM, type= "l", xlab= "Years", ylab="dSP", main="Difference 10-Year Treasury Constant Maturity Rate", major.format="%Y Q%q")
The original and Logarithm look the same since the data is in percentage form.
ur.df(TCM,type="trend", selectlags="BIC")
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -1.8664 1.5301 2.2932
summary(ur.df(TCM))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.69091 -0.11836 0.00569 0.13438 1.49725
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.001138 0.001414 -0.804 0.421
## z.diff.lag 0.304983 0.034438 8.856 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2567 on 764 degrees of freedom
## Multiple R-squared: 0.09352, Adjusted R-squared: 0.09115
## F-statistic: 39.41 on 2 and 764 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -0.8045
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since the -0.8073 < -2.58 -1.95 -1.62 ,we do not reject the null hypothesis of a unit root.Thus, there is a present of unit root in the 10-Year Treasury Constant Maturity Rate
TCM.urkpss <- ur.kpss(TCM, type="tau", lags="short")
summary(TCM.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 6 lags.
##
## Value of test-statistic is: 2.3444
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 2.3394 > 0.119 0.146 0.176 0.216 ,we reject the null hypothesis of the stationary.Thus, 10-Year Treasury Constant Maturity Rate is stationary.
TCM.urers1 <- ur.ers(TCM, type="P-test", model="trend")
summary(TCM.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 32.8302
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 32.9017 > 3.96 5.62 6.89 ,we reject the null hypothesis.
Unemployment Rate
U<- Quandl("FRED/UNRATE", type="zoo")
plot(U, type= "l",xlab= "Years", ylab="U", main="Unemployment Rate", major.format="%Y Q%q")
lU<-log(U)
plot(lSP, type= "l",xlab= "Years", ylab="lU", main="LogUnemployment Rate", major.format="%Y Q%q")
dU<-diff(U)
plot(dU, type= "l", xlab= "Years", ylab="dU", main="Difference of Unemployment Rate", major.format="%Y Q%q")
dU2<-diff(dU)
plot(dU2, type= "l", xlab= "Years", ylab="dU", main="Difference of Unemployment Rate", major.format="%Y Q%q")
#Original data #ADF test
ur.df(U,type="trend", selectlags="BIC")
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -2.0217 1.5983 2.3933
summary(ur.df(U))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.65147 -0.10760 0.00272 0.11499 1.32803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.0006054 0.0012033 -0.503 0.615029
## z.diff.lag 0.1201937 0.0344692 3.487 0.000514 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2091 on 827 degrees of freedom
## Multiple R-squared: 0.0147, Adjusted R-squared: 0.01232
## F-statistic: 6.17 on 2 and 827 DF, p-value: 0.002189
##
##
## Value of test-statistic is: -0.5031
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since -0.4639 < 2.58 -1.95 -1.62 ,we do not reject the null hypothesis of a unit root.Thus, there is present of unit root in the Unemployment Rate.
U.urkpss <- ur.kpss(U, type="tau", lags="short")
summary(U.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 6 lags.
##
## Value of test-statistic is: 0.5054
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since .5035 > 0.119 0.146 0.176 0.216 ,we reject the null hypothesis of the stationary.Thus, the Unemployment Rate is stationary.
U.urers1 <- ur.ers(U, type="P-test", model="trend")
summary(U.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 3.8756
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 3.7551 < 3.96 5.62 6.89 ,we do not reject the null hypothesis.
ADF,ERS are rejected,but we do not reject KPSS So the original time series model it does contain a unit root, and it is not stationary. So, we will perform the test on second differences of original data which seems more stationary.
ur.df(dU2,type="trend", selectlags="BIC")
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -36.5525 445.3747 668.0616
summary(ur.df(dU2))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.70477 -0.11423 0.00178 0.13254 1.12489
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -2.13728 0.05840 -36.60 <2e-16 ***
## z.diff.lag 0.33928 0.03269 10.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2112 on 825 degrees of freedom
## Multiple R-squared: 0.8216, Adjusted R-squared: 0.8212
## F-statistic: 1900 on 2 and 825 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -36.5972
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since the absolute value of (-36.5604) > the absolute value of (-2.58 -1.95 -1.62) ,we reject the null hypothesis of a unit root.Thus, there is no present of unit root in the first diffrence of Unemployment Rate. .
dU2.urkpss <- ur.kpss(dU2, type="tau", lags="short")
summary(dU2.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 6 lags.
##
## Value of test-statistic is: 0.0074
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 0.0064 < 0.119 0.146 0.176 0.216 ,we do not reject the null hypothesis of the stationary.Thus, the first diffrence of Unemployment Rate is not stationary.
dU2.urers1 <- ur.ers(dU2, type="P-test", model="trend")
summary(dU2.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 0.3631
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 0.3505 < 3.96 5.62 6.89 ,we do not reject the null hypothesis.
U.S. / U.K. Foreign Exchange Rate
e<- Quandl("FRED/EXUSUK", type="zoo")
plot(e, type= "l",xlab= "Years", ylab="e", main="U.S. / U.K. Foreign Exchange Rate", major.format="%Y Q%q")
le<-log(e)
plot(le, type= "l",xlab= "Years", ylab="le", main="Log_U.S. / U.K. Foreign Exchange Rate", major.format="%Y Q%q")
dle<-diff(le)
plot(dle, type= "l", xlab= "Years", ylab="dle", main="difference of Log_U.S. / U.K. Foreign Exchange Rate", major.format="%Y Q%q")
dle2<-diff(dle)
plot(dle2, type= "l", xlab= "Years", ylab="dle", main="difference of Log_U.S. / U.K. Foreign Exchange Rate", major.format="%Y Q%q")
Logarithm #ADF test
ur.df(le,type="trend", selectlags="BIC")
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -2.8874 3.0032 4.1721
summary(ur.df(le))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.091898 -0.013005 0.001127 0.014430 0.085670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.002513 0.001672 -1.503 0.133
## z.diff.lag 0.338661 0.039976 8.472 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02238 on 552 degrees of freedom
## Multiple R-squared: 0.1193, Adjusted R-squared: 0.1161
## F-statistic: 37.39 on 2 and 552 DF, p-value: 5.902e-16
##
##
## Value of test-statistic is: -1.503
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since absolute value of(-1.5038) < -2.58 -1.95 -1.62 ,we fail to reject the null hypothesis of a unit root.Thus, there is a present of unit root in the log-transformed time series of U.S. / U.K. Foreign Exchange Rate.
le.urkpss <- ur.kpss(le, type="tau", lags="short")
summary(le.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 6 lags.
##
## Value of test-statistic is: 0.6858
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 0.6976 > 0.119 0.146 0.176 0.216 ,we reject the null hypothesis of the stationary.Thus, the log-transformed time series of U.S. / U.K. Foreign Exchange Rate is stationary.
le.urers1 <- ur.ers(le, type="P-test", model="trend")
summary(le.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 7.7578
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 7.782 > 3.96 5.62 6.89 ,we reject the null hypothesis.
ur.df(dle2 ,type="trend", selectlags="BIC")
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -27.2699 247.8843 371.8257
summary(ur.df(dle2))
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.090257 -0.014650 0.000612 0.014025 0.095264
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -1.72751 0.06323 -27.319 <2e-16 ***
## z.diff.lag 0.36451 0.03977 9.166 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02464 on 550 degrees of freedom
## Multiple R-squared: 0.6814, Adjusted R-squared: 0.6802
## F-statistic: 588.1 on 2 and 550 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -27.3195
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
Unit root test H0: time series {yt} has a unit root. Since the absolute value of (-27.308) > the absolute value of (-2.58 -1.95 -1.62) ,we reject the null hypothesis of a unit root.Thus, there is no present of unit root in the log-transformed time series of Real Gross Private Domestic Investment.
dle2.urkpss<- ur.kpss(dle2, type="tau", lags="short")
summary(dle2.urkpss)
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 6 lags.
##
## Value of test-statistic is: 0.0065
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Stationarity test H0: {yt} is stationary. Since 0.0063 < 0.119 0.146 0.176 0.216 ,we do not reject the null hypothesis of the stationary.Thus, the log-transformed time series of U.S. / U.K. Foreign Exchange Rate is not stationary.
dle2.urers1 <- ur.ers(dle2, type="P-test", model="trend")
summary(dle2.urers1)
##
## ###############################################
## # Elliot, Rothenberg and Stock Unit Root Test #
## ###############################################
##
## Test of type P-test
## detrending of series with intercept and trend
##
## Value of test-statistic is: 0.027
##
## Critical values of P-test are:
## 1pct 5pct 10pct
## critical values 3.96 5.62 6.89
Since 0.0268 < 3.96 5.62 6.89 ,we do not reject the null hypothesis.