Read in turker accuracy data
d.bw.raw = read.csv("../data/backALLfinal_withALLSimilaritiesPlusNorms.csv")
d.bw2 = d.bw.raw %>%
select(electrode, labSubj, subjCode, cue,
turkerGuess, isRight) %>%
rename(condition = electrode) %>%
mutate(condition = fct_recode(condition, "sham" = "na")) %>%
mutate(turkerGuess= str_trim(turkerGuess))
cue.ns = d.bw2 %>%
filter(isRight == 0) %>%
group_by(condition, cue) %>%
summarize(n = length(unique(turkerGuess)))
The data:
spread(cue.ns, condition, n) %>%
select(-sham) %>%
mutate(dif = cathodal-anodal) %>%
arrange(-dif) %>%
as.data.frame()
## cue anodal cathodal dif
## 1 alligator 27 42 15
## 2 cow 19 33 14
## 3 pencil 35 48 13
## 4 car 41 53 12
## 5 tree 44 56 12
## 6 spoon 34 45 11
## 7 wrench 57 68 11
## 8 couch 55 64 9
## 9 owl 40 49 9
## 10 bird 33 41 8
## 11 book 43 51 8
## 12 carrot 40 48 8
## 13 phone 25 33 8
## 14 fish 52 59 7
## 15 grasshopper 57 64 7
## 16 toilet 35 42 7
## 17 bed 38 44 6
## 18 banana 28 32 4
## 19 hammer 56 60 4
## 20 umbrella 53 56 3
## 21 scissors 56 58 2
## 22 table 64 66 2
## 23 ball 54 55 1
## 24 bicycle 48 49 1
## 25 bottle 59 60 1
## 26 frog 33 34 1
## 27 duck 40 40 0
## 28 water 41 41 0
## 29 key 66 65 -1
## 30 motorcycle 62 61 -1
## 31 zebra 23 22 -1
## 32 chair 58 56 -2
## 33 hand 81 78 -3
## 34 lime 51 48 -3
## 35 rabbit 28 23 -5
## 36 lizard 52 44 -8
## 37 dog 39 25 -14
## 38 bucket 72 57 -15
## 39 purse 68 53 -15
Means:
cue.ms = cue.ns %>%
group_by(condition) %>%
multi_boot_standard(column = "n", na.rm = T)
kable(cue.ms)
| condition | mean | ci_lower | ci_upper |
|---|---|---|---|
| anodal | 46.33333 | 41.87115 | 50.66731 |
| cathodal | 49.30769 | 45.30705 | 53.26090 |
| sham | 52.02564 | 47.97372 | 56.38526 |
ggplot(cue.ms, aes(x = condition, y = mean, fill = condition)) +
geom_bar(position = "dodge", stat = "identity") +
geom_linerange(aes(ymax = ci_upper, ymin = ci_lower)) +
ggtitle("mean number of unique wrong guesses") +
theme_bw() +
theme(legend.position = "none")
paired-test:
tidy(t.test(filter(cue.ns, condition == "anodal")$n,
filter(cue.ns, condition == "cathodal")$n, paired=TRUE)) %>%
kable()
| estimate | statistic | p.value | parameter | conf.low | conf.high | method | alternative |
|---|---|---|---|---|---|---|---|
| -2.974359 | -2.447356 | 0.0191244 | 38 | -5.434677 | -0.5140406 | Paired t-test | two.sided |
The mixed-effect model with orthogonal contrasts:
contrasts(cue.ns$condition) <- c(.5, -.5, 0)
colnames(contrasts(cue.ns$condition)) <- c('anodalVScathodal','experimentalVSsham')
M16a <- lmer(scale(n) ~ condition + (1|cue), data = cue.ns)
wrong.base <- lmer(scale(n) ~ 1 + (1|cue), data = cue.ns)
kable(tidy(anova(M16a, wrong.base, test = "Chi")))
| term | df | AIC | BIC | logLik | deviance | statistic | Chi.Df | p.value |
|---|---|---|---|---|---|---|---|---|
| wrong.base | 3 | 278.2508 | 286.5373 | -136.1254 | 272.2508 | NA | NA | NA |
| M16a | 5 | 270.5438 | 284.3546 | -130.2719 | 260.5438 | 11.70703 | 2 | 0.0028698 |
summary(M16a)
## Linear mixed model fit by REML ['lmerMod']
## Formula: scale(n) ~ condition + (1 | cue)
## Data: cue.ns
##
## REML criterion at convergence: 268.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.23385 -0.62966 0.00387 0.47412 2.56201
##
## Random effects:
## Groups Name Variance Std.Dev.
## cue (Intercept) 0.7222 0.8498
## Residual 0.2666 0.5163
## Number of obs: 117, groups: cue, 39
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -8.803e-16 1.442e-01 0.000
## conditionanodalVScathodal -2.143e-01 1.169e-01 -1.832
## conditionexperimentalVSsham 2.473e-01 8.267e-02 2.991
##
## Correlation of Fixed Effects:
## (Intr) cndtnnVS
## cndtnndlVSc 0.000
## cndtnxprmVS 0.000 0.000
Mixed-effect model with only experimental contrast:
experiment.cues = filter(cue.ns, condition != "sham") %>%
ungroup() %>%
mutate(condition = droplevels(condition))
M16b <- lmer(scale(n) ~ condition + (1|cue), data = experiment.cues)
wrong.base <- lmer(scale(n) ~ 1 + (1|cue), data = experiment.cues)
kable(tidy(anova(M16b, wrong.base, test = "Chi")))
| term | df | AIC | BIC | logLik | deviance | statistic | Chi.Df | p.value |
|---|---|---|---|---|---|---|---|---|
| wrong.base | 3 | 181.2404 | 188.3105 | -87.62021 | 175.2404 | NA | NA | NA |
| M16b | 4 | 177.5321 | 186.9590 | -84.76607 | 169.5321 | 5.708273 | 1 | 0.0168851 |
summary(M16b)
## Linear mixed model fit by REML ['lmerMod']
## Formula: scale(n) ~ condition + (1 | cue)
## Data: experiment.cues
##
## REML criterion at convergence: 174.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.82116 -0.46072 0.05351 0.48251 1.92734
##
## Random effects:
## Groups Name Variance Std.Dev.
## cue (Intercept) 0.8507 0.9223
## Residual 0.1506 0.3881
## Number of obs: 78, groups: cue, 39
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.10754 0.16023 -0.671
## conditioncathodal 0.21508 0.08788 2.447
##
## Correlation of Fixed Effects:
## (Intr)
## condtncthdl -0.274