\(\alpha = .05\) (Critical Values -2.06, 2.06)
population <- rnorm(10000,0,1)
n <- 25
samp <- sample(population,n)
s <- sd(samp)
xbar <- mean(samp)
statt <- (xbar - 0) * sqrt(n)/s
statt
## [1] -2.215578
A few random samples
i <- 1
nn <- 20
stat <- vector(mode = "numeric",length = nn)
population <- rnorm(10000,0,1)
for (i in 1:nn) {
samp <- sample(population,n)
s <- sd(samp)
xbar <- mean(samp)
stat[i] <- (xbar - 0) * sqrt(n)/s
}
#c(qt(.975,24),qt(.025,24))
stat
## [1] -0.34462853 -1.03976824 1.24418068 -1.19729368 0.62804099
## [6] -0.97980862 0.40591786 0.49424022 2.84202132 2.49564472
## [11] 0.91279627 0.13088136 1.08977851 -0.49166765 -1.05058938
## [16] -1.45550732 0.08348907 1.48619378 0.18618938 -0.91987791
#y <-ifelse(stat < -2.06 | stat > 2.06,1,0 )
#sum(y)
#sum(y)/nn