Comparing the correlations of network variables in the election data set to network variables in the travel control data set:

setwd("~/Downloads/local_variables/")
la <- read.table("Los_Angeles.txt", header = TRUE, sep = "\t")

setwd("~/Downloads/local_variables_control_set")

TC <- read.table("Los_Angeles.txt", header = T, sep = "\t")

la_subset <- la[ ,c(-2,-3,-4)]

names(la_subset)
##  [1] "Date"                   "Local.Tweets"          
##  [3] "Users"                  "Total.Density"         
##  [5] "Local.Users"            "Local.Density"         
##  [7] "Unique.Links"           "Connected.Components"  
##  [9] "Avg.Nontrivial.CC.size" "Avg.Degree"            
## [11] "Avg.Clustering"         "Communities"           
## [13] "Modularity"             "Communities.per.User"  
## [15] "Avg.Community.Size"     "Largest.Community"     
## [17] "Local"                  "Bridges"               
## [19] "Undefined"
names(TC)
##  [1] "Date"                   "Local.Tweets"          
##  [3] "Users"                  "Total.Density"         
##  [5] "Local.Users"            "Local.Density"         
##  [7] "Unique.Links"           "Connected.Components"  
##  [9] "Avg.Nontrivial.CC.size" "Avg.Degree"            
## [11] "Avg.Clustering"         "Communities"           
## [13] "Modularity"             "Communities.per.User"  
## [15] "Avg.Community.Size"     "Largest.Community"     
## [17] "Local"                  "Bridges"               
## [19] "Undefined"
for (i in 2:ncol(la_subset)){
  la_subset[,i] <- as.numeric(la_subset[,i])
}

for (i in 2:ncol(TC)){
  TC[,i] <- as.numeric(TC[,i])
}
par(mfrow=c(1,2))

plot(la_subset[, 1:10])

plot(TC[, 1:10])

plot(la_subset[, 11:19])

plot(TC[, 11:19])

plot(la_subset[, 5:15])

plot(TC[, 5:15])