Comparing the correlations of network variables in the election data set to network variables in the travel control data set:
setwd("~/Downloads/local_variables/")
la <- read.table("Los_Angeles.txt", header = TRUE, sep = "\t")
setwd("~/Downloads/local_variables_control_set")
TC <- read.table("Los_Angeles.txt", header = T, sep = "\t")
la_subset <- la[ ,c(-2,-3,-4)]
names(la_subset)
## [1] "Date" "Local.Tweets"
## [3] "Users" "Total.Density"
## [5] "Local.Users" "Local.Density"
## [7] "Unique.Links" "Connected.Components"
## [9] "Avg.Nontrivial.CC.size" "Avg.Degree"
## [11] "Avg.Clustering" "Communities"
## [13] "Modularity" "Communities.per.User"
## [15] "Avg.Community.Size" "Largest.Community"
## [17] "Local" "Bridges"
## [19] "Undefined"
names(TC)
## [1] "Date" "Local.Tweets"
## [3] "Users" "Total.Density"
## [5] "Local.Users" "Local.Density"
## [7] "Unique.Links" "Connected.Components"
## [9] "Avg.Nontrivial.CC.size" "Avg.Degree"
## [11] "Avg.Clustering" "Communities"
## [13] "Modularity" "Communities.per.User"
## [15] "Avg.Community.Size" "Largest.Community"
## [17] "Local" "Bridges"
## [19] "Undefined"
for (i in 2:ncol(la_subset)){
la_subset[,i] <- as.numeric(la_subset[,i])
}
for (i in 2:ncol(TC)){
TC[,i] <- as.numeric(TC[,i])
}
par(mfrow=c(1,2))
plot(la_subset[, 1:10])
plot(TC[, 1:10])
plot(la_subset[, 11:19])
plot(TC[, 11:19])
plot(la_subset[, 5:15])
plot(TC[, 5:15])