Read in r2star & group data
r2star <- read.csv("r2star_finalSample_03152017.csv")
r2star$ageAtScan1 <- (r2star$ageAtScan1)/12
groups <- read.csv("n1601_go1_diagnosis_dxpmr_20161014.csv")
r2star_groups <- merge(r2star, groups, by=c("bblid","scanid"))
Male sample
male <- subset(r2star, sex == "1")
maleCount <- nrow(male)
maleAvgAge <- round(mean(male$ageAtScan1), digits = 0)
Female sample
female <- subset(r2star, sex == "2")
femaleCount <- nrow(female)
femaleAvgAge <- round(mean(female$ageAtScan1), digits = 0)
TD sample
r2starTD <- subset(r2star_groups, goassessDxpmr6 == "TD")
tdCount <- nrow(r2starTD)
tdMale <- subset(r2starTD, sex == "1")
tdMaleCount <- nrow(tdMale)
tdMaleAge <- round(mean(tdMale$ageAtScan1), digits = 0)
tdFemale <- subset(r2starTD, sex == "1")
tdFemaleCount <- nrow(tdFemale)
tdFemaleAge <- round(mean(tdFemale$ageAtScan1), digits = 0)
PS sample
r2starPS <- subset(r2star_groups, goassessDxpmr6 == "PS")
psCount <- nrow(r2starPS)
psMale <- subset(r2starPS, sex == "1")
psMaleCount <- nrow(psMale)
tdMaleAge <- round(mean(tdMale$ageAtScan1), digits = 0)
psFemale <- subset(r2starPS, sex == "2")
psFemaleCount <- nrow(psFemale)
psFemaleAge <- round(mean(psFemale$ageAtScan1), digits = 0)
Male & Female Sample Size Plot
count <- data.frame(
Sex = factor(c("Male","Female"), levels=c("Male","Female")),
Size = c(maleCount, femaleCount)
)
sex = c("Male", "Female")
number <- c(maleCount,femaleCount)
countdf = cbind(count, sex)
fullSamplePlot = ggplot(data=countdf, aes(x=Sex, y=Size, fill=sex)) +
geom_bar(stat="identity",width=0.5) +
guides(fill=FALSE) +
xlab("Sex") + ylab("Size") +
ggtitle("Full Sample") +
geom_text(aes(label=number), vjust=1.6, color="white", size=3)+
theme_minimal()
plot(fullSamplePlot)

Male & Female Age Plot
avgAge <- data.frame(
Sex = factor(c("Male","Female"), levels=c("Male","Female")),
Size = c(maleAvgAge, femaleAvgAge)
)
sex = c("Male", "Female")
avg <- c(maleAvgAge,femaleAvgAge)
avgAgedf = cbind(avgAge, sex)
agePlot = ggplot(data=avgAgedf, aes(x=Sex, y=Size, fill=sex)) +
geom_bar(stat="identity",width=0.5) +
guides(fill=FALSE) +
xlab("Sex") + ylab("Average Age (years)") +
ggtitle("Full Sample: Average Age") +
geom_text(aes(label=avg), vjust=1.6, color="white", size=3)+
theme_minimal()
plot(agePlot)

TD & PS Sample Size
td_ps <- data.frame(
Sex = factor(c("Male","Female","Male","Female")),
Dx = factor(c("TD","TD","PS","PS"), levels=c("TD","PS")),
Size = c(tdMaleCount, tdFemaleCount, psMaleCount, psFemaleCount)
)
number_td_ps = c(tdMaleCount, tdFemaleCount, psMaleCount, psFemaleCount)
td_ps_plot = ggplot(data=td_ps, aes(x=Dx, y=Size, fill=Sex)) +
geom_bar(stat="identity", position = 'dodge') +
ggtitle("TD & PS Sample") +
geom_text(aes(label=number_td_ps), position=position_dodge(width=0.9), vjust=2, color="white", size=3) +
theme_minimal()
plot(td_ps_plot)

Arrange Plots
plot_grid(fullSamplePlot, agePlot, td_ps_plot, labels = c("A","C","B"))
