output: html_document: default pdf_document: default

By GaryFH - 04/19/2017

Synopsis

Two tests were conducted to observe the bandwidth over time and temperature over time.

Start by preparing the working environment

library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3

Download data

Two tests each with three csv files noted fioA, fioB & smart_temp - the files included in the Github repo. Removed bad temp data (ie temps over 200 deg C)
        t1fioA<-read.csv("t1fioA.csv",stringsAsFactors = FALSE)
        t1fioB<-read.csv("t1fioB.csv",stringsAsFactors = FALSE)
        t2fioA<-read.csv("t2fioA.csv",stringsAsFactors = FALSE)
        t2fioB<-read.csv("t2fioB.csv",stringsAsFactors = FALSE)
        t1smart<-read.csv("t1smart_temp.csv", stringsAsFactors=FALSE)
        t2smart<-read.csv("t2smart_temp.csv", stringsAsFactors=FALSE)
t1a1<-tbl_df(t1fioA)
t1b1<-tbl_df(t1fioB)
t1s1<-tbl_df(t1smart)
t1s1<-filter(t1s1,X.dev.nvme0.FUM27053002F187A < 200)
t2a1<-tbl_df(t2fioA)
t2b1<-tbl_df(t2fioB)
t2s1<-tbl_df(t2smart)
t2s1<-filter(t2s1,X.dev.nvme0.FUM27053002F187A < 200)

Work with test1 first

Look at fioA.csv, fiob.csv, smart_temp.csv

        summary(t1a1)
##       Time             bandwidth     
##  Min.   :1.492e+09   Min.   :   0.0  
##  1st Qu.:1.492e+09   1st Qu.:   9.0  
##  Median :1.492e+09   Median :  10.0  
##  Mean   :1.492e+09   Mean   : 370.5  
##  3rd Qu.:1.492e+09   3rd Qu.: 937.0  
##  Max.   :1.492e+09   Max.   :9993.0
        summary(t1b1)
##       Time             bandwidth     
##  Min.   :1.492e+09   Min.   :   0.0  
##  1st Qu.:1.492e+09   1st Qu.:   9.0  
##  Median :1.492e+09   Median :  10.0  
##  Mean   :1.492e+09   Mean   : 360.3  
##  3rd Qu.:1.492e+09   3rd Qu.: 930.0  
##  Max.   :1.492e+09   Max.   :9993.0
        summary(t1s1)
##      Time           X.dev.nvme0.FUM27053002F187A
##  Length:4984        Min.   :35.00               
##  Class :character   1st Qu.:56.00               
##  Mode  :character   Median :77.00               
##                     Mean   :71.38               
##                     3rd Qu.:82.00               
##                     Max.   :83.00

Test1 Remove non common time stamps from bandwidth data

        t1a2a<-filter(t1a1,Time>=1492156719)
        t1a2b<-mutate(t1a2a,bandwidth2=bandwidth)
        t1a2<-select(t1a2b,Time,bandwidth2)

Test1 Merge bandwidth data (fioA and fioB) based on time stamp

        t1a<-full_join(t1a2,t1b1,by="Time")
        t1b<-mutate(t1a,totalbandwidth=bandwidth+bandwidth)
        t1c<-select(t1b,Time,totalbandwidth)

Test1 Remove NA and rename temperature data and arrange dataframe

        s1a<-mutate(t1s1,temp=X.dev.nvme0.FUM27053002F187A)
        s1b<-filter(s1a,temp,!is.na(temp))
        s1b$Time<-as.integer(s1b$Time)
## Warning: NAs introduced by coercion to integer range
        s1<-select(s1b,Time,temp)

Test1 Merge tempature data with bandwidth data based on time stamp

        test1unfilteredB<-full_join(s1,t1c,by="Time")
        test1unfilteredC<-filter(test1unfilteredB,temp,!is.na(temp))
        test1unfilteredD<-filter(test1unfilteredC,Time,!is.na(Time))
        test1unfiltered<-arrange(test1unfilteredD,Time)

Test1 Pretty up Timestamp & correct bandwidth

        test1unfiltered$Time<-as.numeric(test1unfiltered$Time)
        test1unfiltered1b<-mutate(test1unfiltered,Time=Time - 1492156656)
        t1<-mutate(test1unfiltered1b,totalbandwidth=
        ifelse(totalbandwidth<4000,totalbandwidth,totalbandwidth/1000))

Test1: Plot time vrs temp

        g1<-ggplot(t1,aes(x=Time,y=temp))
        Test1_plot1<-g1+geom_point(shape=1,color="orange") + geom_smooth() 
        Test1_plot1 
## `geom_smooth()` using method = 'gam'

Test1: Plot time vrs bandwidth

        t2<-filter(t1,totalbandwidth,!is.na(totalbandwidth))
        g2<-ggplot(t2,aes(x=Time,y=totalbandwidth))
        Test1_plot2<-g2+geom_point(shape=1,color="magenta") + geom_smooth() 
        Test1_plot2 
## `geom_smooth()` using method = 'gam'

Test1: Plot bandwidth vrs temp (just for fun)

        t2<-filter(t1,totalbandwidth,!is.na(totalbandwidth))
        g3<-ggplot(t2,aes(x=temp,y=totalbandwidth))
        Test1_plot3<-g3+geom_point(shape=1,color="red") + geom_smooth() 
        Test1_plot3 
## `geom_smooth()` using method = 'gam'

Next - work with Test2

Look at test2 fioA.csv, fiob.csv, smart_temp.csv

        summary(t2a1)
##       Time             bandwidth     
##  Min.   :1.492e+09   Min.   :   9.0  
##  1st Qu.:1.492e+09   1st Qu.: 813.0  
##  Median :1.492e+09   Median :1041.0  
##  Mean   :1.492e+09   Mean   : 848.4  
##  3rd Qu.:1.492e+09   3rd Qu.:1096.0  
##  Max.   :1.492e+09   Max.   :1126.0
        summary(t2b1)
##       Time             bandwidth     
##  Min.   :1.492e+09   Min.   :   9.0  
##  1st Qu.:1.492e+09   1st Qu.: 815.0  
##  Median :1.492e+09   Median :1053.0  
##  Mean   :1.492e+09   Mean   : 871.1  
##  3rd Qu.:1.492e+09   3rd Qu.:1096.0  
##  Max.   :1.492e+09   Max.   :9993.0
        summary(t2s1)
##       Time           X.dev.nvme0.FUM27053002F187A
##  Min.   :1.492e+09   Min.   :56.00               
##  1st Qu.:1.492e+09   1st Qu.:56.00               
##  Median :1.492e+09   Median :56.00               
##  Mean   :1.492e+09   Mean   :58.21               
##  3rd Qu.:1.492e+09   3rd Qu.:56.00               
##  Max.   :1.492e+09   Max.   :72.00

Test2 Remove non common time stamps from bandwidth data

        t2a2a<-filter(t2a1,Time>=1492163556)
        t2a2b<-mutate(t2a2a,bandwidth2=bandwidth)
        t2a2<-select(t2a2b,Time,bandwidth2)

Test2 Merge bandwidth data (fioA and fioB) based on time stamp

        t2a<-full_join(t2a2,t2b1,by="Time")
        t2b<-mutate(t2a,totalbandwidth=bandwidth+bandwidth)
        t2c<-select(t2b,Time,totalbandwidth)

Test2 Remove NA and rename tempature data and arrange dataframe

        s2a<-mutate(t2s1,temp=X.dev.nvme0.FUM27053002F187A)
        s2b<-filter(s2a,temp,!is.na(temp))
        s2b$Time<-as.integer(s2b$Time)
        s2<-select(s2b,Time,temp)

Test2 Merge tempature data with bandwidth data based on time stamp

        test2unfilteredB<-full_join(s2,t2c,by="Time")
        test2unfilteredC<-filter(test2unfilteredB,temp,!is.na(temp))
        test2unfilteredD<-filter(test2unfilteredC,Time,!is.na(Time))
        test2unfiltered<-arrange(test2unfilteredD,Time)

Test2 Pretty up Timestamp & correct bandwidth

        test2unfiltered$Time<-as.numeric(test2unfiltered$Time)
        test2unfiltered2b<-mutate(test2unfiltered,Time=Time - 1492163513)
        t2<-mutate(test2unfiltered2b,totalbandwidth=
        ifelse(totalbandwidth<4000,totalbandwidth,totalbandwidth/1000))

Test2: Plot time vrs temp

        g21<-ggplot(t2,aes(x=Time,y=temp))
        Test2_plot1<-g21+geom_point(shape=1,color="orange") + geom_smooth() 
        Test2_plot1 
## `geom_smooth()` using method = 'gam'

Test1: Plot time vrs bandwidth

        t2b<-filter(t2,totalbandwidth,!is.na(totalbandwidth))
        g22<-ggplot(t2b,aes(x=Time,y=totalbandwidth))
        Test2_plot2<-g22+geom_point(shape=1,color="magenta") + geom_smooth() 
        Test2_plot2 
## `geom_smooth()` using method = 'gam'

Test1: Plot bandwidth vrs temp (just for fun)

        t2b<-filter(t2,totalbandwidth,!is.na(totalbandwidth))
        g23<-ggplot(t2b,aes(x=temp,y=totalbandwidth))
        Test2_plot3<-g23+geom_point(shape=1,color="red") + geom_smooth() 
        Test2_plot3 
## `geom_smooth()` using method = 'gam'