Statistical Methods for Reliability Data

Chapter 12 - Prediction of Future Random Quantities

W. Q. Meeker, L. A. Escobar, and J. K. Freels

19 April 2017

CHAPTER OVERVIEW

This chapter explains

12.1 - INTRODUCTION

12.1.1 - Motivation and prediction problems

12.1.2 - Model

12.1.3 - Data

12.2 - PROBABILITY PREDICTION INTERVALS (\(\theta\) GIVEN)

12.3 - STATISTICAL PREDICTION INTERVAL (\(\theta\) ESTIMATED)

12.3.1 - Coverage probability concepts

Statistical predictions

\[PI(1-\alpha)=[\underset{\sim}{T}, \overset{\sim}{T}]\]

Coverage probability for prediction intervals with fixed \(DATA\)

\[ \begin{aligned} CP[PI(1-\alpha)|\boldsymbol{\widehat{\theta}};\boldsymbol{\theta}&=Pr(\underset{\sim}{T} \le T \le \overset{\sim}{T}|\boldsymbol{\widehat{\theta}};\boldsymbol{\theta})\\\\ &=F(\overset{\sim}{T};\boldsymbol{\theta})-F(\underset{\sim}{T};\boldsymbol{\theta}) \end{aligned} \]

Coverage probability for prediction intervals with random \(DATA\)

\[ \begin{aligned} CP[PI(1-\alpha)|\boldsymbol{\theta}&=Pr(\underset{\sim}{T} \le T \le \overset{\sim}{T}|;\boldsymbol{\theta})\\\\ &=E_{_{\boldsymbol{\widehat{\theta}}}}\left[CP[PI(1-\alpha)|\boldsymbol{\widehat{\theta}};\boldsymbol{\theta}\right] \end{aligned} \]

12.3.2 - Relationship between 1-sided & 2-sided prediction intervals

Equal Vs Unequal Prediction Intervals

12.3.3 - Naive method for computing a statistical prediction interval

Naive prediction intervals

\[ \begin{aligned} PI(1-\alpha)&=\left[\underset{\sim}{T},\overset{\sim}{T}\right]\\\\ &=\left[\widehat{t}_{_{\alpha/2}},\widehat{t}_{_{1-\alpha/2}}\right]\\\\ &=\left[\exp\left(\widehat{\mu}_{_{MLE}}+\Phi^{-1}(\alpha/2)\times \widehat{\sigma}_{_{MLE}}\right),\quad\exp\left(\widehat{\mu}_{_{MLE}}+\Phi^{-1}(1-\alpha/2)\times \widehat{\sigma}_{_{MLE}}\right)\right] \end{aligned} \]

Examples 12.2 & 12.3
Naive prediction intervals (lognormal & Weibull distributions)

Background

example12_2 <- data.frame(cycles = c(lzbearing[1:15,],rep(80,8)), 
                          status = rep(c('fail','right'), c(15,8)))

example12_2

Assuming lognormal distributed failures

\[ \begin{aligned} \left[\underset{\sim}{T},\overset{\sim}{T}\right]&=\left[\exp\left(\widehat{\mu}_{_{MLE}}+\Phi_{_{NOR}}^{-1}(0.05)\times \widehat{\sigma}_{_{MLE}}\right), \quad\exp\left(\widehat{\mu}_{_{MLE}}+\Phi_{_{NOR}}^{-1}(0.95)\times \widehat{\sigma}_{_{MLE}}\right)\right]\\\\ &=\left[\exp\left(4.16+(-1.645)\times 0.5451\right), \quad\exp\left(4.16+1.645\times 0.5451\right)\right]\\\\ &=[26.1, \quad 157.1] \end{aligned} \]

Assuming Weibull distributed failures

\[ \begin{aligned} \left[\underset{\sim}{T},\overset{\sim}{T}\right]&=\left[\exp\left(\widehat{\mu}_{_{MLE}}+\Phi_{_{SEV}}^{-1}(0.05)\times \widehat{\sigma}_{_{MLE}}\right), \quad\exp\left(\widehat{\mu}_{_{MLE}}+\Phi_{_{SEV}}^{-1}(0.95)\times \widehat{\sigma}_{_{MLE}}\right)\right]\\\\ &=\left[\exp\left(4.334+(-2.970)\times 0.4013\right), \quad\exp\left(4.334+1.097\times 0.4013\right)\right]\\\\ &=[23.2, \quad 118.4] \end{aligned} \]

12.4 - THE (APPROXIMATE) PIVOTAL METHOD FOR PREDICTION INTERVALS

In this section

Pivotal Quantities vs. Statistics

12.4.1 - Type II (failure) censoring

Background

\[Z_{_{\log(T)}}=\frac{\log(T)-\widehat{\mu}}{\widehat{\sigma}}\]

\[ Pr\left[z_{_{\log(T)_{(\alpha/2)}}} < \frac{\log(T)-\widehat{\mu}}{\widehat{\sigma}} \le z_{_{\log(T)_{(1-\alpha/2)}}}\right]=1-\alpha \]

\[ Pr\left[\widehat{\mu} + z_{_{\log(T)_{(\alpha/2)}}} \times \widehat{\sigma} < \log(T) \le \widehat{\mu} + z_{_{\log(T)_{(1-\alpha/2)}}}\times \widehat{\sigma} \right]=1-\alpha \]

\[ \left[\underset{\sim}{T},\overset{\sim}{T}\right]=\left[\exp\left(\widehat{\mu} + z_{_{\log(T)_{(\alpha/2)}}} \times \widehat{\sigma}\right), \quad \exp\left(\widehat{\mu} + z_{_{\log(T)_{(1-\alpha/2)}}}\times \widehat{\sigma}\right) \right] \]

Obtaining values \(z_{_{\log(T)_{(p)}}}\)

Bootstrapping procedure for \(Z_{_{\log(T)}}\)

12.4.2 - Type I (time) Censoring

Background

Example 12.4
Approximate prediction interval for ball bearing life

Background

The Bootstrapping Process

samp <- rlnorm(23, meanlog = 4.16, sdlog = 0.5451)
samp
 [1]  65.91668 125.68141  83.85398  79.72670 145.07512 134.86884 106.55705
 [8]  56.66127  23.19409  75.35078  39.58821  67.00100  90.66342  48.21936
[15]  57.08964 117.15660  70.23828  36.46338  87.68860  51.18963  62.99366
[22]  57.27232  69.98910
samp <- 
  sapply(X = seq_along(samp), 
         FUN = function(x) `if`(samp[x] >= 80, 80, samp[x]))
         
samp <- sort(samp)
fails <- sum(samp < 80)
right <- sum(samp == 80)
samp.df <- 
  data.frame(megacycles = samp,
             status = rep(c('fail','right'),c(fails,right)))
samp.df
samp.ld <- frame.to.ld(samp.df,
                       response.column = 1, 
                       censor.column = 2)
mlest <- print(mlest(samp.ld, distribution = 'lognormal'))

`mu*`    <- mlest$mle[1,1]
`sigma*` <- mlest$mle[2,1]

`mu*` ; `sigma*`
[1] 4.24117
[1] 0.4333061
`T*` <- rlnorm(1, meanlog = 4.160, sdlog = 0.5451)
`Z_log[T*]` <- (log(`T*`) - `mu*`)/`sigma*`
`Z_log[T*]`
[1] 0.3702068
boot.pivot <- 
  function(B = 100, N = 23, 
           mu = 4.16, sigma = 0.5451, 
           t_c = 80, alpha = 0.10) 
{

samp <- replicate(B, rlnorm(N, mu, sigma))

samp <- apply(samp, MARGIN = 2, sort)

samp[which(samp > t_c)] <- t_c

params <- 
  sapply(X = 1:B, 
         FUN = function(x) {
           
      fails <- sum(samp[,x] < t_c)
      right <- N - fails
      samp.df <- 
        data.frame(samp[,x],
                   rep(c('f','r'),c(fails,right)))
      samp.ld <- 
        frame.to.ld(samp.df,
                    response.column = 1,
                    censor.column = 2)
      
      print(mlest(samp.ld, distribution = 'lognormal'))$mle[,1]
})

zlog_t <- 
  sapply(X = 1:B,
        FUN = function(x) { 
                        
    numer <- log(rlnorm(1, mu, sigma)) - params[[1,x]]
    denom <- params[[2,x]]
    numer / denom
})

zlog_t <- sort(zlog_t)

limits <- zlog_t[c(B * alpha / 2, B * (1 - alpha / 2))]

zout         <- list()
zout$zlog_t  <- zlog_t
zout$limits  <- limits 
zout$predict <- exp(mu + limits * sigma) 

return(zout)
}

12.5 - PREDICTION IN SIMPLE CASES

12.5.1 - Complete samples from a lognormal distribution

12.5.2 - Complete of Type II censored samples from an exponential distribution

12.6 - CALIBRATING NAIVE STATISTICAL PREDICTION BOUNDS

12.6.1 - Calibration by simulation of the sampling/prediction process

12.6.2 - Calibration by averaging conditional coverage probabilities

12.7 - PREDICTION OF FUTURE FAILURES FROM A SINGLE GROUP OF UNITS IN THE FIELD

12.8 - PREDICTION OF FUTURE FAILURES FROM MULTIPLE GROUPS WITH STAGGERED ENTRY