library(RCurl)
## Loading required package: bitops
#data(iris)
#View(iris)
#names(iris)
iris<-read.csv("C:/Program Files/RStudio/iris2class.csv")
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
#for input variables
irisInput<-iris[,-5]
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
model<-randomForest(Species~.,data=iris,method="class")
mypredict<-function(newdata){
require(randomForest) # we need to load the required packages that are used in traning
predict(model,newdata,type = "response")
}
library(AzureML)
## Warning: package 'AzureML' was built under R version 3.3.3
library(devtools)
#NOte : need to install Rtools,set tick at path
#go to azure studio -> settings -> take WORKSPACE ID
#go to azure studio -> settings -> AUTHORIZATION TOKENS -> PRIMARY AUTHORIZATION TOKEN
wsID="9f119c34247a49c393214a9f304c5b89"
wsAuth="d6819252940d4bdca80654cfe6ccb313"
wsobj=workspace(wsID,wsAuth)
iriswebservice<-publishWebService(
wsobj,
fun=mypredict,
name = "iriswebservice",
inputSchema = irisInput
)
## converting `inputSchema` to data frame
It will automatically update in webservice in Azure.
iriswebservice <- updateWebService(
wsobj,
fun=mypredict,
name = "iriswebservice1",
inputSchema = irisInput,
serviceId = iriswebservice$WebServiceId # <<-- Required to update!
)
## converting `inputSchema` to data frame