Run a multiple regression on each of the data categories as predictors of ring witdth index. This will output that is as follows: \(RWI = X_1 + X_2 + X_3 + X_4 + ... + X_8 + \epsilon\) Where \(X_n\) is each climate variable.


my.data <- read.csv(file="E:\\Flash Drive\\ESCI 407\\Data\\PRISM_climate_data.csv", header=TRUE, sep=",")

library(MASS)
par(mfrow=c(1:2))#set the plotting window to two figures side by side

#
# Here is the R code for the non-averaged models.
#
all.lm <- lm(all ~ mint + maxt + meant +  maxvpd + minvpd + dewpt + ppt + snow , data=my.data)
all_tsme.lm <- lm(all_tsme ~ mint + maxt + meant +  maxvpd + minvpd + dewpt + ppt + snow, data=my.data)
all_abam.lm <- lm(all_abam ~ mint + maxt + meant +  maxvpd + minvpd + dewpt + ppt + snow, data=my.data)

Summary Stats - RWI ~ climate variables.

summary(all.lm)
## 
## Call:
## lm(formula = all ~ mint + maxt + meant + maxvpd + minvpd + dewpt + 
##     ppt + snow, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.082968 -0.022826  0.002966  0.032854  0.085152 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.955e+00  5.319e-01   3.675  0.00173 **
## mint        -1.600e-01  7.942e-02  -2.015  0.05907 . 
## maxt        -2.122e-01  9.179e-02  -2.312  0.03282 * 
## meant        3.336e-01  1.720e-01   1.940  0.06827 . 
## maxvpd       2.376e-02  2.611e-02   0.910  0.37497   
## minvpd      -2.234e-02  2.796e-02  -0.799  0.43474   
## dewpt        2.401e-02  3.525e-02   0.681  0.50433   
## ppt         -3.443e-05  3.672e-05  -0.937  0.36093   
## snow        -1.166e-04  2.161e-04  -0.539  0.59616   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0555 on 18 degrees of freedom
## Multiple R-squared:  0.4032, Adjusted R-squared:  0.138 
## F-statistic:  1.52 on 8 and 18 DF,  p-value: 0.2186

Summary Stats - TSME-RWI ~ climate variables.

summary(all_tsme.lm)
## 
## Call:
## lm(formula = all_tsme ~ mint + maxt + meant + maxvpd + minvpd + 
##     dewpt + ppt + snow, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.101471 -0.051069  0.007462  0.045290  0.111979 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.406e+00  7.445e-01   1.888   0.0753 .
## mint        -1.701e-01  1.112e-01  -1.530   0.1434  
## maxt        -2.199e-01  1.285e-01  -1.711   0.1042  
## meant        4.308e-01  2.407e-01   1.790   0.0904 .
## maxvpd       3.027e-04  3.655e-02   0.008   0.9935  
## minvpd      -2.942e-02  3.914e-02  -0.752   0.4619  
## dewpt       -2.258e-03  4.933e-02  -0.046   0.9640  
## ppt         -4.355e-05  5.140e-05  -0.847   0.4079  
## snow         3.279e-04  3.024e-04   1.084   0.2926  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07768 on 18 degrees of freedom
## Multiple R-squared:  0.3759, Adjusted R-squared:  0.09853 
## F-statistic: 1.355 on 8 and 18 DF,  p-value: 0.2802

Summary Stats - ABAM-RWI ~ climate variables.

summary(all_abam.lm)
## 
## Call:
## lm(formula = all_abam ~ mint + maxt + meant + maxvpd + minvpd + 
##     dewpt + ppt + snow, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.103099 -0.035559  0.000754  0.037666  0.090794 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.587e+00  5.772e-01   4.481 0.000289 ***
## mint        -1.485e-01  8.618e-02  -1.723 0.102059    
## maxt        -2.034e-01  9.960e-02  -2.042 0.056112 .  
## meant        2.216e-01  1.866e-01   1.188 0.250441    
## maxvpd       5.072e-02  2.834e-02   1.790 0.090291 .  
## minvpd      -1.422e-02  3.034e-02  -0.469 0.644934    
## dewpt        5.424e-02  3.825e-02   1.418 0.173189    
## ppt         -2.381e-05  3.985e-05  -0.598 0.557533    
## snow        -6.299e-04  2.345e-04  -2.687 0.015069 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06022 on 18 degrees of freedom
## Multiple R-squared:  0.4946, Adjusted R-squared:   0.27 
## F-statistic: 2.202 on 8 and 18 DF,  p-value: 0.07831
all.lm <- lm(all ~  maxvpd + minvpd + dewpt + ppt + snow , data=my.data)
all_tsme.lm <- lm(all_tsme ~ maxvpd + minvpd + dewpt + ppt + snow, data=my.data)
all_abam.lm <- lm(all_abam ~ maxvpd + minvpd + dewpt + ppt + snow, data=my.data)

Three year averages

Summary Stats Moving average of all RWI ~ climate variables

Caluclate the three year moving averages for each variable

ma3 <- filter(x=my.data$all, filter=rep(x=1/3,times=3), sides=2)
ma_tsme3 <- filter(x=my.data$all_tsme, filter=rep(x=1/3,times=3), sides=2)
ma_abam3 <- filter(x=my.data$all_abam, filter=rep(x=1/3,times=3), sides=2)
maless_3 <- filter(x=my.data$less_3, filter=rep(x=1/3,times=3), sides=2)
magreater_3 <- filter(x=my.data$greater_3, filter=rep(x=1/3,times=3), sides=2)
ma_tsme3.lm <- lm(ma_tsme3 ~ mint + maxt + meant +  maxvpd + minvpd + dewpt + ppt + snow, data=my.data)
summary(ma_tsme3.lm)
## 
## Call:
## lm(formula = ma_tsme3 ~ mint + maxt + meant + maxvpd + minvpd + 
##     dewpt + ppt + snow, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.091417 -0.028796  0.002048  0.031995  0.050208 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.706e+00  5.008e-01   3.407  0.00361 **
## mint        -1.273e-01  6.785e-02  -1.876  0.07905 . 
## maxt        -1.692e-01  8.161e-02  -2.073  0.05471 . 
## meant        2.706e-01  1.474e-01   1.836  0.08499 . 
## maxvpd       9.908e-03  2.500e-02   0.396  0.69705   
## minvpd      -2.090e-02  2.527e-02  -0.827  0.42039   
## dewpt        1.671e-02  3.065e-02   0.545  0.59308   
## ppt          2.008e-05  3.179e-05   0.632  0.53661   
## snow         2.049e-04  1.862e-04   1.100  0.28745   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04741 on 16 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.4313, Adjusted R-squared:  0.147 
## F-statistic: 1.517 on 8 and 16 DF,  p-value: 0.2272
ma_abam3.lm <- lm(ma_abam3 ~ mint + maxt + meant +  maxvpd + minvpd + dewpt + ppt + snow, data=my.data)
summary(ma_abam3.lm)
## 
## Call:
## lm(formula = ma_abam3 ~ mint + maxt + meant + maxvpd + minvpd + 
##     dewpt + ppt + snow, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.051822 -0.020459  0.002884  0.019201  0.049999 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.049e+00  3.894e-01   5.261 7.77e-05 ***
## mint        -9.409e-02  5.276e-02  -1.783  0.09350 .  
## maxt        -1.487e-01  6.346e-02  -2.343  0.03239 *  
## meant        1.813e-01  1.146e-01   1.583  0.13306    
## maxvpd       2.803e-02  1.944e-02   1.442  0.16860    
## minvpd      -3.020e-02  1.965e-02  -1.537  0.14381    
## dewpt        2.025e-02  2.383e-02   0.850  0.40802    
## ppt         -1.835e-06  2.472e-05  -0.074  0.94177    
## snow        -5.135e-04  1.448e-04  -3.546  0.00269 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03687 on 16 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.5996, Adjusted R-squared:  0.3994 
## F-statistic: 2.995 on 8 and 16 DF,  p-value: 0.02946
ma3.all.lm <- lm(ma3 ~ mint + maxt + meant +  maxvpd + minvpd + dewpt + ppt + snow, data=my.data)
summary(ma3.all.lm)
## 
## Call:
## lm(formula = ma3 ~ mint + maxt + meant + maxvpd + minvpd + dewpt + 
##     ppt + snow, data = my.data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.04859 -0.02378  0.00293  0.01978  0.04689 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.865e+00  3.442e-01   5.419 5.68e-05 ***
## mint        -1.119e-01  4.664e-02  -2.399   0.0290 *  
## maxt        -1.597e-01  5.610e-02  -2.847   0.0117 *  
## meant        2.292e-01  1.013e-01   2.263   0.0379 *  
## maxvpd       1.832e-02  1.718e-02   1.066   0.3020    
## minvpd      -2.522e-02  1.737e-02  -1.452   0.1657    
## dewpt        1.834e-02  2.107e-02   0.871   0.3968    
## ppt          9.859e-06  2.185e-05   0.451   0.6579    
## snow        -1.285e-04  1.280e-04  -1.004   0.3302    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03259 on 16 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.4858, Adjusted R-squared:  0.2287 
## F-statistic:  1.89 on 8 and 16 DF,  p-value: 0.1326

Summary Stats Moving average of all DBH<3

RWI ~ climate variables

maless_3.lm <- lm(maless_3 ~ meant + maxt + mint + ppt + snow + maxvpd + minvpd + dewpt, data=my.data)
summary(maless_3.lm)
## 
## Call:
## lm(formula = maless_3 ~ meant + maxt + mint + ppt + snow + maxvpd + 
##     minvpd + dewpt, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.050967 -0.012117  0.001116  0.019261  0.052472 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.286e+00  3.497e-01   6.537 6.85e-06 ***
## meant        2.710e-01  1.029e-01   2.634  0.01805 *  
## maxt        -2.060e-01  5.698e-02  -3.615  0.00232 ** 
## mint        -1.533e-01  4.738e-02  -3.236  0.00517 ** 
## ppt          7.721e-06  2.220e-05   0.348  0.73250    
## snow        -2.338e-04  1.300e-04  -1.798  0.09100 .  
## maxvpd       3.289e-02  1.745e-02   1.885  0.07777 .  
## minvpd      -2.199e-02  1.764e-02  -1.247  0.23040    
## dewpt        3.840e-02  2.140e-02   1.794  0.09168 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0331 on 16 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.6175, Adjusted R-squared:  0.4262 
## F-statistic: 3.229 on 8 and 16 DF,  p-value: 0.02196

Summary Stats Moving average of all DBH>=3

RWI ~ climate variables

magreater_3.lm <- lm(magreater_3 ~ meant + maxt + mint + ppt + snow + maxvpd + minvpd + dewpt, data=my.data)
summary(magreater_3.lm)
## 
## Call:
## lm(formula = magreater_3 ~ meant + maxt + mint + ppt + snow + 
##     maxvpd + minvpd + dewpt, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.055445 -0.025117  0.003493  0.021127  0.056964 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.501e+00  4.012e-01   3.742  0.00178 **
## meant        1.930e-01  1.181e-01   1.635  0.12154   
## maxt        -1.196e-01  6.539e-02  -1.829  0.08609 . 
## mint        -7.600e-02  5.436e-02  -1.398  0.18119   
## ppt          1.169e-05  2.547e-05   0.459  0.65234   
## snow        -3.727e-05  1.492e-04  -0.250  0.80593   
## maxvpd       5.698e-03  2.003e-02   0.285  0.77964   
## minvpd      -2.802e-02  2.024e-02  -1.384  0.18524   
## dewpt        9.577e-04  2.456e-02   0.039  0.96937   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03798 on 16 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.3038, Adjusted R-squared:  -0.04434 
## F-statistic: 0.8726 on 8 and 16 DF,  p-value: 0.5585
Plot 3 year moving average to make sure it looks correct.
plot(my.data$year,my.data$all,col="darkgrey",type="b")
lines(ma3~my.data$year,col="red",lwd=2)

ma3.lm <- lm(all ~ snow + maxt+ meant + minvpd, data=my.data)#linear modle
summary(ma3.lm)
## 
## Call:
## lm(formula = all ~ snow + maxt + meant + minvpd, data = my.data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.098685 -0.025107  0.004499  0.035017  0.091844 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9047061  0.1966181   4.601 0.000139 ***
## snow        -0.0001420  0.0002087  -0.680 0.503531    
## maxt        -0.0371202  0.0271478  -1.367 0.185328    
## meant        0.0712457  0.0403706   1.765 0.091479 .  
## minvpd      -0.0139775  0.0178490  -0.783 0.441921    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05827 on 22 degrees of freedom
## Multiple R-squared:  0.196,  Adjusted R-squared:  0.04987 
## F-statistic: 1.341 on 4 and 22 DF,  p-value: 0.2863