sms_raw <- read.csv(“sms_spam.csv”, stringsAsFactors = FALSE)
str(sms_raw)
sms_raw\(type <- factor(sms_raw\)type)
str(sms_raw\(type) table(sms_raw\)type)
library(tm) sms_corpus <- VCorpus(VectorSource(sms_raw$text))
print(sms_corpus) inspect(sms_corpus[1:2])
as.character(sms_corpus[[1]]) lapply(sms_corpus[1:2], as.character)
sms_corpus_clean <- tm_map(sms_corpus, content_transformer(tolower))
as.character(sms_corpus[[1]]) as.character(sms_corpus_clean[[1]])
sms_corpus_clean <- tm_map(sms_corpus_clean, removeNumbers) # remove numbers sms_corpus_clean <- tm_map(sms_corpus_clean, removeWords, stopwords()) # remove stop words sms_corpus_clean <- tm_map(sms_corpus_clean, removePunctuation) # remove punctuation
removePunctuation(“hello…world”) replacePunctuation <- function(x) { gsub(“[[:punct:]]+”, " “, x) } replacePunctuation(”hello…world“)
library(SnowballC) wordStem(c(“learn”, “learned”, “learning”, “learns”))
sms_corpus_clean <- tm_map(sms_corpus_clean, stemDocument)
sms_corpus_clean <- tm_map(sms_corpus_clean, stripWhitespace) # eliminate unneeded whitespace
lapply(sms_corpus[1:3], as.character) lapply(sms_corpus_clean[1:3], as.character)
sms_dtm <- DocumentTermMatrix(sms_corpus_clean)
sms_dtm2 <- DocumentTermMatrix(sms_corpus, control = list( tolower = TRUE, removeNumbers = TRUE, stopwords = TRUE, removePunctuation = TRUE, stemming = TRUE ))
sms_dtm3 <- DocumentTermMatrix(sms_corpus, control = list( tolower = TRUE, removeNumbers = TRUE, stopwords = function(x) { removeWords(x, stopwords()) }, removePunctuation = TRUE, stemming = TRUE ))
sms_dtm sms_dtm2 sms_dtm3
sms_dtm_train <- sms_dtm[1:4169, ] sms_dtm_test <- sms_dtm[4170:5559, ]
sms_train_labels <- sms_raw[1:4169, ]\(type sms_test_labels <- sms_raw[4170:5559, ]\)type
prop.table(table(sms_train_labels)) prop.table(table(sms_test_labels))
library(wordcloud) wordcloud(sms_corpus_clean, min.freq = 50, random.order = FALSE)
spam <- subset(sms_raw, type == “spam”) ham <- subset(sms_raw, type == “ham”)
wordcloud(spam\(text, max.words = 40, scale = c(3, 0.5)) wordcloud(ham\)text, max.words = 40, scale = c(3, 0.5))
sms_dtm_freq_train <- removeSparseTerms(sms_dtm_train, 0.999) sms_dtm_freq_train
findFreqTerms(sms_dtm_train, 5)
sms_freq_words <- findFreqTerms(sms_dtm_train, 5) str(sms_freq_words)
sms_dtm_freq_train <- sms_dtm_train[ , sms_freq_words] sms_dtm_freq_test <- sms_dtm_test[ , sms_freq_words]
convert_counts <- function(x) { x <- ifelse(x > 0, “Yes”, “No”) }
sms_train <- apply(sms_dtm_freq_train, MARGIN = 2, convert_counts) sms_test <- apply(sms_dtm_freq_test, MARGIN = 2, convert_counts)
library(e1071) sms_classifier <- naiveBayes(sms_train, sms_train_labels)
sms_test_pred <- predict(sms_classifier, sms_test)
head(sms_test_pred)
library(gmodels) CrossTable(sms_test_pred, sms_test_labels, prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE, dnn = c(‘predicted’, ‘actual’))
sms_classifier2 <- naiveBayes(sms_train, sms_train_labels, laplace = 5) sms_test_pred2 <- predict(sms_classifier2, sms_test) CrossTable(sms_test_pred2, sms_test_labels, prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE, dnn = c(‘predicted’, ‘actual’))