Carlsbad-Blvd

setwd("C:/Users/s-das/Syncplicity Folders/MY_Projects/NCHRP 17-76/04102017/Data Sources/INRIX/")
a01 <- read.csv("C/Carlsbad-Blvd-entire-length-9-11-16.csv")
str(a01)
## 'data.frame':    108864 obs. of  9 variables:
##  $ tmc_code           : Factor w/ 54 levels "106-13652","106-13653",..: 3 41 49 10 45 40 27 47 36 42 ...
##  $ measurement_tstamp : Factor w/ 2016 levels "9/11/2016 0:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ speed              : num  21 25 22 30 22 35 32 44 40 33 ...
##  $ average_speed      : int  21 25 22 30 22 35 32 44 40 33 ...
##  $ reference_speed    : int  20 22 16 29 31 31 32 40 36 34 ...
##  $ travel_time_minutes: num  1.3 0.04 0.04 1.6 0.13 0.01 3.74 0.28 0.5 0.03 ...
##  $ confidence_score   : num  20 20 20 20 20 20 20 20 20 20 ...
##  $ cvalue             : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ tmc1               : Factor w/ 54 levels "TMC106-13652",..: 3 41 49 10 45 40 27 47 36 42 ...
a02 <- read.csv("C/TMC_Identification1.csv")
a03 <- merge(a01, a02, by="tmc1")
dim(a01)
## [1] 108864      9
dim(a02)
## [1] 54 14
dim(a03)
## [1] 108864     22
names(a03)
##  [1] "tmc1"                "tmc_code"            "measurement_tstamp" 
##  [4] "speed"               "average_speed"       "reference_speed"    
##  [7] "travel_time_minutes" "confidence_score"    "cvalue"             
## [10] "tmc"                 "road"                "direction"          
## [13] "intersection"        "state"               "county"             
## [16] "zip"                 "start_latitude"      "start_longitude"    
## [19] "end_latitude"        "end_longitude"       "miles"              
## [22] "road_order"
table(a03$direction)
## 
## NORTHBOUND SOUTHBOUND 
##      54432      54432
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
a03$Time <- format(as.POSIXct(strptime(a03$measurement_tstamp, "%m/%d/%Y  %H:%M",tz="")) ,format = "%H:%M")
a03$Time1 <- as.POSIXct(a03$Time, format = "%H:%M")
a03$Date <- format(as.POSIXct(strptime(a03$measurement_tstamp, "%m/%d/%Y  %H:%M",tz="")) ,format = "%Y-%m-%d")
a03$Time1 <- as.POSIXct(a03$Time, format = "%H:%M")
a03$Date1 <- as.Date(a03$Date)
a03$Day <- wday(a03$Date1, label = TRUE)
str(a03)
## 'data.frame':    108864 obs. of  27 variables:
##  $ tmc1               : Factor w/ 54 levels "TMC106-13652",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ tmc_code           : Factor w/ 54 levels "106-13652","106-13653",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ measurement_tstamp : Factor w/ 2016 levels "9/11/2016 0:00",..: 1515 1238 1355 1036 1893 371 1257 18 45 1460 ...
##  $ speed              : num  14 24.2 27 27.2 27 ...
##  $ average_speed      : int  21 21 27 28 26 24 22 28 22 25 ...
##  $ reference_speed    : int  28 28 28 28 28 28 28 28 28 28 ...
##  $ travel_time_minutes: num  4.17 2.42 2.16 2.15 2.16 2.26 2.65 2.08 2.94 2.33 ...
##  $ confidence_score   : num  30 30 20 28 30 30 20 20 30 20 ...
##  $ cvalue             : num  63.4 100 0 80 100 100 0 0 100 0 ...
##  $ tmc                : Factor w/ 54 levels "106-13652","106-13653",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ road               : Factor w/ 1 level "CR-S21": 1 1 1 1 1 1 1 1 1 1 ...
##  $ direction          : Factor w/ 2 levels "NORTHBOUND","SOUTHBOUND": 2 2 2 2 2 2 2 2 2 2 ...
##  $ intersection       : Factor w/ 18 levels "4TH ST/DEL MAR HEIGHTS RD",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ state              : Factor w/ 1 level "CA": 1 1 1 1 1 1 1 1 1 1 ...
##  $ county             : Factor w/ 1 level "SAN DIEGO": 1 1 1 1 1 1 1 1 1 1 ...
##  $ zip                : int  92054 92054 92054 92054 92054 92054 92054 92054 92054 92054 ...
##  $ start_latitude     : num  33.2 33.2 33.2 33.2 33.2 ...
##  $ start_longitude    : num  -117 -117 -117 -117 -117 ...
##  $ end_latitude       : num  33.2 33.2 33.2 33.2 33.2 ...
##  $ end_longitude      : num  -117 -117 -117 -117 -117 ...
##  $ miles              : num  0.973 0.973 0.973 0.973 0.973 ...
##  $ road_order         : num  7 7 7 7 7 7 7 7 7 7 ...
##  $ Time               : chr  "14:10" "15:05" "23:50" "21:15" ...
##  $ Time1              : POSIXct, format: "2017-04-13 14:10:00" "2017-04-13 15:05:00" ...
##  $ Date               : chr  "2016-09-16" "2016-09-15" "2016-09-15" "2016-09-14" ...
##  $ Date1              : Date, format: "2016-09-16" "2016-09-15" ...
##  $ Day                : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tues"<..: 6 5 5 4 7 2 5 1 1 6 ...
aa1 <- subset(a03, direction=="NORTHBOUND")
aa3 <- subset(a03, direction=="SOUTHBOUND")
require(ggplot2)
## Loading required package: ggplot2
require(scales)
## Loading required package: scales
ggplot(aa1, aes(x=Time1, y=speed)) + 
  geom_point(size=.9, alpha = 0.05, colour="green") + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M"))+theme_bw()+labs(x="Time of Day", y="Speed (mph)", title=
                                                   "Carlsbad Blvd (Northbound)")

ggplot(aa1, aes(x=Time1, y=speed, colour=Day)) + 
  geom_point(size=.5, alpha = 0.1) + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +
  facet_grid(Day ~.) +
  theme(legend.position="none") +theme_bw()+labs(x="Time of Day", y="Speed (mph)", title=
                                                   "Carlsbad Blvd (Northbound)")

ggplot(aa3, aes(x=Time1, y=speed)) + 
  geom_point(size=.9, alpha = 0.05, colour="green") + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M"))+theme_bw()+labs(x="Time of Day", y="Speed (mph)", title=
                                                   "Carlsbad Blvd (Southbound)")

ggplot(aa3, aes(x=Time1, y=speed, colour=Day)) + 
  geom_point(size=.5, alpha = 0.1) + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +
  facet_grid(Day ~.) +
  theme(legend.position="none") +theme_bw()+labs(x="Time of Day", y="Speed (mph)", title=
                                                   "Carlsbad Blvd (Southbound)")

aa2 <- aggregate(speed ~ Time1+direction+Day, a03, mean)
head(aa2)
##                 Time1  direction Day    speed
## 1 2017-04-13 00:00:00 NORTHBOUND Sun 31.36963
## 2 2017-04-13 00:05:00 NORTHBOUND Sun 31.30259
## 3 2017-04-13 00:10:00 NORTHBOUND Sun 31.27370
## 4 2017-04-13 00:15:00 NORTHBOUND Sun 31.31037
## 5 2017-04-13 00:20:00 NORTHBOUND Sun 31.44444
## 6 2017-04-13 00:25:00 NORTHBOUND Sun 31.37481
dim(aa1)
## [1] 54432    27
dim(aa2)
## [1] 4032    4
colnames(aa2)[2] <- "Direction"
ggplot(aa2, aes(x=Time1, y=speed, colour=Direction)) + 
  geom_path() + geom_point(cex=0.4)+
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +
  facet_grid(Day ~.) +
  theme(legend.position="none") +theme_bw()+labs(x="Time of Day", y="Speed (mph)")

NPMRDS

setwd("F:/NPMRDS/112016/FHWA_TASK2-4_US_11_2016_TT")
ga <- read.csv("GA_Forsyth.csv")

ga$DATE <- format(as.POSIXct(strptime(as.character(ga$DATE), "%m/%d/%Y",tz="")) ,format = "%Y-%m-%d")
ga$Time2 <- as.POSIXct(ga$Time, format = "%H:%M")
str(ga)
## 'data.frame':    34547 obs. of  19 variables:
##  $ TMC                           : Factor w/ 6 levels "101N04224","101N04225",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ DATE                          : chr  "2016-11-01" "2016-11-01" "2016-11-01" "2016-11-01" ...
##  $ EPOCH                         : int  5 7 8 9 12 13 14 16 17 20 ...
##  $ Min                           : int  30 40 45 50 65 70 75 85 90 105 ...
##  $ Travel_TIME_ALL_VEHICLES      : int  240 265 245 257 301 256 214 279 235 216 ...
##  $ Travel_TIME_PASSENGER_VEHICLES: int  240 NA 245 257 301 256 NA 279 235 NA ...
##  $ Travel_TIME_FREIGHT_TRUCKS    : int  NA 265 NA NA NA NA 214 NA NA 216 ...
##  $ Time                          : Factor w/ 288 levels "0:00","0:05",..: 7 9 10 11 14 15 16 18 19 22 ...
##  $ ADMIN_LEVEL_1                 : Factor w/ 1 level "USA": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ADMIN_LEVEL_2                 : Factor w/ 1 level "Georgia": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ADMIN_LEVEL_3                 : Factor w/ 1 level "Forsyth": 1 1 1 1 1 1 1 1 1 1 ...
##  $ DISTANCE                      : num  4.18 4.18 4.18 4.18 4.18 ...
##  $ ROAD_NUMBER                   : Factor w/ 1 level "US-19": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ROAD_NAME                     : logi  NA NA NA NA NA NA ...
##  $ LATITUDE                      : num  34.1 34.1 34.1 34.1 34.1 ...
##  $ LONGITUDE                     : num  -84.2 -84.2 -84.2 -84.2 -84.2 ...
##  $ ROAD_DIRECTION                : Factor w/ 1 level "Southbound": 1 1 1 1 1 1 1 1 1 1 ...
##  $ speed                         : int  63 57 61 59 50 59 70 54 64 70 ...
##  $ Time2                         : POSIXct, format: "2017-04-13 00:30:00" "2017-04-13 00:40:00" ...
library(lubridate)
ga$Date1 <- as.Date(ga$DATE)
ga$Day <- wday(ga$DATE, label=TRUE)
str(ga)
## 'data.frame':    34547 obs. of  21 variables:
##  $ TMC                           : Factor w/ 6 levels "101N04224","101N04225",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ DATE                          : chr  "2016-11-01" "2016-11-01" "2016-11-01" "2016-11-01" ...
##  $ EPOCH                         : int  5 7 8 9 12 13 14 16 17 20 ...
##  $ Min                           : int  30 40 45 50 65 70 75 85 90 105 ...
##  $ Travel_TIME_ALL_VEHICLES      : int  240 265 245 257 301 256 214 279 235 216 ...
##  $ Travel_TIME_PASSENGER_VEHICLES: int  240 NA 245 257 301 256 NA 279 235 NA ...
##  $ Travel_TIME_FREIGHT_TRUCKS    : int  NA 265 NA NA NA NA 214 NA NA 216 ...
##  $ Time                          : Factor w/ 288 levels "0:00","0:05",..: 7 9 10 11 14 15 16 18 19 22 ...
##  $ ADMIN_LEVEL_1                 : Factor w/ 1 level "USA": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ADMIN_LEVEL_2                 : Factor w/ 1 level "Georgia": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ADMIN_LEVEL_3                 : Factor w/ 1 level "Forsyth": 1 1 1 1 1 1 1 1 1 1 ...
##  $ DISTANCE                      : num  4.18 4.18 4.18 4.18 4.18 ...
##  $ ROAD_NUMBER                   : Factor w/ 1 level "US-19": 1 1 1 1 1 1 1 1 1 1 ...
##  $ ROAD_NAME                     : logi  NA NA NA NA NA NA ...
##  $ LATITUDE                      : num  34.1 34.1 34.1 34.1 34.1 ...
##  $ LONGITUDE                     : num  -84.2 -84.2 -84.2 -84.2 -84.2 ...
##  $ ROAD_DIRECTION                : Factor w/ 1 level "Southbound": 1 1 1 1 1 1 1 1 1 1 ...
##  $ speed                         : int  63 57 61 59 50 59 70 54 64 70 ...
##  $ Time2                         : POSIXct, format: "2017-04-13 00:30:00" "2017-04-13 00:40:00" ...
##  $ Date1                         : Date, format: "2016-11-01" "2016-11-01" ...
##  $ Day                           : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tues"<..: 3 3 3 3 3 3 3 3 3 3 ...
library(ggplot2)
library(scales)
ggplot(ga, aes(x=Time2, y=speed)) + 
  geom_point(size=1.1, alpha = 0.05, colour="blue") + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M"))+theme_bw()+labs(x="Time of Day", y="Speed (mph)")

ggplot(ga, aes(x=Time2, y=speed, colour=Day)) + 
  geom_point(cex=0.6) + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +theme_bw()+labs(x="Time of Day", y="Speed (mph)")

ggplot(ga, aes(x=Time2, y=speed, colour=Day)) + 
  geom_point(size=.5, alpha = 0.1) + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +
  facet_grid(Day ~.) +
  theme(legend.position="none") +theme_bw()+labs(x="Time of Day", y="Speed (mph)")

aa2 <- aggregate(speed ~ Time2 + Day, ga, mean)
head(aa2)
##                 Time2 Day    speed
## 1 2017-04-13 00:00:00 Sun 62.00000
## 2 2017-04-13 00:05:00 Sun 59.00000
## 3 2017-04-13 00:10:00 Sun 55.80000
## 4 2017-04-13 00:15:00 Sun 56.00000
## 5 2017-04-13 00:20:00 Sun 56.80000
## 6 2017-04-13 00:25:00 Sun 56.57143
ggplot(aa2, aes(x=Time2, speed, colour=Day)) + 
  geom_path(cex=1.1) + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +
  facet_grid(Day ~.) +
  theme(legend.position="none") +theme_bw()+labs(x="Time of Day", y="Speed (mph)")

ggplot(aa2, aes(x=Time2, y=speed, colour=Day)) + 
  geom_path(cex=0.8) + 
  scale_x_datetime(breaks=date_breaks("2 hour"), labels=date_format("%H:%M")) +theme_bw()+
  labs(x="Time of Day", y="Speed (mph)")