# Loading required package, setting working directory, and reading the data file.
require(psych)
## Loading required package: psych
require(BayesFactor)
## Loading required package: BayesFactor
## Loading required package: coda
## Loading required package: Matrix
## ************
## Welcome to BayesFactor 0.9.12-4. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
## 
## Type BFManual() to open the manual.
## ************
setwd("/Users/ivanropovik/OneDrive/MANUSCRIPTS/2016 Many Labs 5/Pilot 1/Analyses/")
pilot1 <- read.csv(file = "Data_brazil_pilot1_2.csv", header = TRUE, sep = ";")

# Computing means of the two scale items for each scenario
# If one of the two target items is missing,
# the score of the other item is used as the estimate for the given scenario
pilot1$scenario1_Q3 <- rowMeans(pilot1[,c("Q9", "Q12")], na.rm = TRUE)
pilot1$scenario2_Q15 <- rowMeans(pilot1[,c("Q20", "Q23")], na.rm = TRUE)
pilot1$scenario3_Q26 <- rowMeans(pilot1[,c("Q31", "Q34")], na.rm = TRUE)
pilot1$scenario4_Q239 <- rowMeans(pilot1[,c("Q244", "Q247")], na.rm = TRUE)
pilot1$scenario5_Q37 <- rowMeans(pilot1[,c("Q42", "Q45")], na.rm = TRUE)
pilot1$scenario6_Q250 <- rowMeans(pilot1[,c("Q255", "Q258")], na.rm = TRUE)
pilot1$scenario7_Q48 <- rowMeans(pilot1[,c("Q53", "Q56")], na.rm = TRUE)
pilot1$scenario8_Q59 <- rowMeans(pilot1[,c("Q64", "Q67")], na.rm = TRUE)
pilot1$scenario9_Q261 <- rowMeans(pilot1[,c("Q266", "Q269")], na.rm = TRUE)
pilot1$scenario10_Q81 <- rowMeans(pilot1[,c("Q86", "Q89")], na.rm = TRUE)
pilot1$scenario11_Q92 <- rowMeans(pilot1[,c("Q97", "Q100")], na.rm = TRUE)
pilot1$scenario12_Q103 <- rowMeans(pilot1[,c("Q108", "Q111")], na.rm = TRUE)
pilot1$scenario13_Q272 <- rowMeans(pilot1[,c("Q277", "Q280")], na.rm = TRUE)
pilot1$scenario14_Q283 <- rowMeans(pilot1[,c("Q288", "Q291")], na.rm = TRUE)
pilot1$scenario15_Q114 <- rowMeans(pilot1[,c("Q119", "Q122")], na.rm = TRUE)
pilot1$scenario16_Q228 <- rowMeans(pilot1[,c("Q233", "Q236")], na.rm = TRUE)
pilot1$scenario17_Q125 <- rowMeans(pilot1[,c("Q130", "Q133")], na.rm = TRUE)
pilot1$scenario18_Q136 <- rowMeans(pilot1[,c("Q141", "Q144")], na.rm = TRUE)
pilot1$scenario19_Q147 <- rowMeans(pilot1[,c("Q152", "Q155")], na.rm = TRUE)
pilot1$scenario20_Q158 <- rowMeans(pilot1[,c("Q163", "Q166")], na.rm = TRUE)
pilot1$scenario21_Q169 <- rowMeans(pilot1[,c("Q174", "Q177")], na.rm = TRUE)



# Sample size
nrow(pilot1)
## [1] 70
# Frequencies for demographic variables
# Q180 = Gender
# Q181 = Year of study
# Q182 = Age
lapply(pilot1[,c("Q180", "Q181", "Q182")],
       function(x){table(x, useNA = "ifany")})
## $Q180
## x
##   18   19   20   21   22   23   24   28   32   33   36 <NA> 
##    2   16   22   11    7    3    2    2    1    1    1    2 
## 
## $Q181
## x
##    1    2   22 <NA> 
##   10   56    2    2 
## 
## $Q182
## x
##    2    3    4    5 <NA> 
##   12   29   14   12    3
# Descriptive statistics for each scenario
lapply(pilot1[,c("scenario1_Q3", "scenario2_Q15", "scenario3_Q26", "scenario4_Q239", "scenario5_Q37",
                 "scenario6_Q250", "scenario7_Q48", "scenario8_Q59", "scenario9_Q261",
                 "scenario10_Q81", "scenario11_Q92", "scenario12_Q103", "scenario13_Q272",
                 "scenario14_Q283", "scenario15_Q114", "scenario16_Q228", "scenario17_Q125",
                 "scenario18_Q136", "scenario19_Q147", "scenario20_Q158", "scenario21_Q169")],
       function(x){describe(x, na.rm = TRUE, fast = TRUE)})
## $scenario1_Q3
##    vars  n mean   sd min max range   se
## X1    1 70 5.91 1.39 1.5   9   7.5 0.17
## 
## $scenario2_Q15
##    vars  n mean   sd min max range   se
## X1    1 70 6.24 1.55 2.5   9   6.5 0.19
## 
## $scenario3_Q26
##    vars  n mean   sd min max range   se
## X1    1 70 4.29 2.02   1   9     8 0.24
## 
## $scenario4_Q239
##    vars  n mean   sd min max range   se
## X1    1 69 5.94 2.05 1.5   9   7.5 0.25
## 
## $scenario5_Q37
##    vars  n mean   sd min max range   se
## X1    1 69 5.32 1.82   1   9     8 0.22
## 
## $scenario6_Q250
##    vars  n mean   sd min max range   se
## X1    1 70 5.63 1.58   2   9     7 0.19
## 
## $scenario7_Q48
##    vars  n mean   sd min max range   se
## X1    1 70 5.89 1.45   3   9     6 0.17
## 
## $scenario8_Q59
##    vars  n mean   sd min max range   se
## X1    1 70 7.67 1.08   5   9     4 0.13
## 
## $scenario9_Q261
##    vars  n mean   sd min max range  se
## X1    1 70 5.67 1.66   2   9     7 0.2
## 
## $scenario10_Q81
##    vars  n mean   sd min max range   se
## X1    1 69 4.16 1.83   1 8.5   7.5 0.22
## 
## $scenario11_Q92
##    vars  n mean   sd min max range  se
## X1    1 69 5.08 1.64   1   9     8 0.2
## 
## $scenario12_Q103
##    vars  n mean  sd min max range   se
## X1    1 69  5.7 1.7 1.5   9   7.5 0.21
## 
## $scenario13_Q272
##    vars  n mean  sd min max range   se
## X1    1 70 6.23 1.4 2.5   9   6.5 0.17
## 
## $scenario14_Q283
##    vars  n mean   sd min max range   se
## X1    1 70 6.91 1.32   2   9     7 0.16
## 
## $scenario15_Q114
##    vars  n mean   sd min max range   se
## X1    1 70 4.82 1.62   1   9     8 0.19
## 
## $scenario16_Q228
##    vars  n mean   sd min max range   se
## X1    1 70 6.61 1.55   3   9     6 0.18
## 
## $scenario17_Q125
##    vars  n mean   sd min max range   se
## X1    1 70 5.99 1.48 1.5   9   7.5 0.18
## 
## $scenario18_Q136
##    vars  n mean   sd min max range   se
## X1    1 70  4.3 1.92   1   9     8 0.23
## 
## $scenario19_Q147
##    vars  n mean   sd min max range   se
## X1    1 70  3.9 1.72   1 8.5   7.5 0.21
## 
## $scenario20_Q158
##    vars  n mean   sd min max range   se
## X1    1 70 5.59 1.93   1   9     8 0.23
## 
## $scenario21_Q169
##    vars  n mean   sd min max range   se
## X1    1 70 7.24 1.29 3.5   9   5.5 0.15
# One-sample t-test for each scenario with population parameter mu set at 5.
lapply(pilot1[,c("scenario1_Q3", "scenario2_Q15", "scenario3_Q26", "scenario4_Q239", "scenario5_Q37",
                 "scenario6_Q250", "scenario7_Q48", "scenario8_Q59", "scenario9_Q261",
                 "scenario10_Q81", "scenario11_Q92", "scenario12_Q103", "scenario13_Q272",
                 "scenario14_Q283", "scenario15_Q114", "scenario16_Q228", "scenario17_Q125",
                 "scenario18_Q136", "scenario19_Q147", "scenario20_Q158", "scenario21_Q169")],
       function(x){t.test(x, data = pilot1, mu = 5, na.rm = TRUE)})
## $scenario1_Q3
## 
##  One Sample t-test
## 
## data:  x
## t = 5.4433, df = 69, p-value = 7.515e-07
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.574677 6.239609
## sample estimates:
## mean of x 
##  5.907143 
## 
## 
## $scenario2_Q15
## 
##  One Sample t-test
## 
## data:  x
## t = 6.6966, df = 69, p-value = 4.697e-09
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.872606 6.613109
## sample estimates:
## mean of x 
##  6.242857 
## 
## 
## $scenario3_Q26
## 
##  One Sample t-test
## 
## data:  x
## t = -2.9546, df = 69, p-value = 0.004279
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  3.803431 4.767997
## sample estimates:
## mean of x 
##  4.285714 
## 
## 
## $scenario4_Q239
## 
##  One Sample t-test
## 
## data:  x
## t = 3.8138, df = 68, p-value = 0.0002975
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.449136 6.434922
## sample estimates:
## mean of x 
##  5.942029 
## 
## 
## $scenario5_Q37
## 
##  One Sample t-test
## 
## data:  x
## t = 1.4577, df = 68, p-value = 0.1495
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  4.882365 5.755316
## sample estimates:
## mean of x 
##  5.318841 
## 
## 
## $scenario6_Q250
## 
##  One Sample t-test
## 
## data:  x
## t = 3.3373, df = 69, p-value = 0.001366
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.252829 6.004314
## sample estimates:
## mean of x 
##  5.628571 
## 
## 
## $scenario7_Q48
## 
##  One Sample t-test
## 
## data:  x
## t = 5.1541, df = 69, p-value = 2.314e-06
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.547267 6.238447
## sample estimates:
## mean of x 
##  5.892857 
## 
## 
## $scenario8_Q59
## 
##  One Sample t-test
## 
## data:  x
## t = 20.7, df = 69, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  7.413974 7.928883
## sample estimates:
## mean of x 
##  7.671429 
## 
## 
## $scenario9_Q261
## 
##  One Sample t-test
## 
## data:  x
## t = 3.3903, df = 69, p-value = 0.001158
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.276338 6.066519
## sample estimates:
## mean of x 
##  5.671429 
## 
## 
## $scenario10_Q81
## 
##  One Sample t-test
## 
## data:  x
## t = -3.8195, df = 68, p-value = 0.0002919
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  3.720269 4.598572
## sample estimates:
## mean of x 
##   4.15942 
## 
## 
## $scenario11_Q92
## 
##  One Sample t-test
## 
## data:  x
## t = 0.40382, df = 68, p-value = 0.6876
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  4.685827 5.473594
## sample estimates:
## mean of x 
##   5.07971 
## 
## 
## $scenario12_Q103
## 
##  One Sample t-test
## 
## data:  x
## t = 3.4246, df = 68, p-value = 0.001048
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.293332 6.112465
## sample estimates:
## mean of x 
##  5.702899 
## 
## 
## $scenario13_Q272
## 
##  One Sample t-test
## 
## data:  x
## t = 7.3529, df = 69, p-value = 3.038e-10
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.895244 6.561899
## sample estimates:
## mean of x 
##  6.228571 
## 
## 
## $scenario14_Q283
## 
##  One Sample t-test
## 
## data:  x
## t = 12.092, df = 69, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  6.592504 7.221782
## sample estimates:
## mean of x 
##  6.907143 
## 
## 
## $scenario15_Q114
## 
##  One Sample t-test
## 
## data:  x
## t = -0.92369, df = 69, p-value = 0.3589
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  4.435757 5.207100
## sample estimates:
## mean of x 
##  4.821429 
## 
## 
## $scenario16_Q228
## 
##  One Sample t-test
## 
## data:  x
## t = 8.7317, df = 69, p-value = 9.195e-13
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  6.245468 6.983104
## sample estimates:
## mean of x 
##  6.614286 
## 
## 
## $scenario17_Q125
## 
##  One Sample t-test
## 
## data:  x
## t = 5.5568, df = 69, p-value = 4.805e-07
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.631832 6.339597
## sample estimates:
## mean of x 
##  5.985714 
## 
## 
## $scenario18_Q136
## 
##  One Sample t-test
## 
## data:  x
## t = -3.0483, df = 69, p-value = 0.003261
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  3.841888 4.758112
## sample estimates:
## mean of x 
##       4.3 
## 
## 
## $scenario19_Q147
## 
##  One Sample t-test
## 
## data:  x
## t = -5.3355, df = 69, p-value = 1.146e-06
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  3.488706 4.311294
## sample estimates:
## mean of x 
##       3.9 
## 
## 
## $scenario20_Q158
## 
##  One Sample t-test
## 
## data:  x
## t = 2.5343, df = 69, p-value = 0.01354
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  5.124657 6.046772
## sample estimates:
## mean of x 
##  5.585714 
## 
## 
## $scenario21_Q169
## 
##  One Sample t-test
## 
## data:  x
## t = 14.53, df = 69, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
##  6.928744 7.542684
## sample estimates:
## mean of x 
##  7.235714
# Bayes factor in favour of the null (BF01) for each scenario
# with population parameter mu set at 5 and prior width of 0.5.
lapply(pilot1[,c("scenario1_Q3", "scenario2_Q15", "scenario3_Q26", "scenario4_Q239", "scenario5_Q37",
                 "scenario6_Q250", "scenario7_Q48", "scenario8_Q59", "scenario9_Q261",
                 "scenario10_Q81", "scenario11_Q92", "scenario12_Q103", "scenario13_Q272",
                 "scenario14_Q283", "scenario15_Q114", "scenario16_Q228", "scenario17_Q125",
                 "scenario18_Q136", "scenario19_Q147", "scenario20_Q158", "scenario21_Q169")],
       function(x){1/ttestBF(x[!is.na(x)], mu = 5, rscale = 0.5,  na.rm = TRUE)})
## t is large; approximation invoked.
## $scenario1_Q3
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 5.070787e-05 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario2_Q15
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 4.417531e-07 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario3_Q26
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.1207713 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario4_Q239
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.01171135 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario5_Q37
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 2.085149 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario6_Q250
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.04500169 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario7_Q48
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.0001432635 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario8_Q59
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 1.228777e-28 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario9_Q261
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.03897268 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario10_Q81
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.011514 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario11_Q92
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 5.083222 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario12_Q103
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.03557272 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario13_Q272
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 3.322467e-08 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario14_Q283
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 2.443848e-16 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario15_Q114
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 3.728901 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario16_Q228
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 1.321426e-10 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario17_Q125
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 3.350119e-05 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario18_Q136
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.09567057 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario19_Q147
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 7.491049e-05 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario20_Q158
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 0.3191535 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS
## 
## 
## $scenario21_Q169
## Bayes factor analysis
## --------------
## [1] Null, mu=5 : 3.378734e-20 ±0%
## 
## Against denominator:
##   Alternative, r = 0.5, mu =/= 5 
## ---
## Bayes factor type: BFoneSample, JZS