Date: April 11, 2017
A. SYNOPSIS
This report is the end result of a sequences of preprocessing and analysis of Banana Land tenure survey, an initiative of the AVANSE banana value chain departement. A tailor-made data entry interface that reflects the field form has beeen designed by the Data management team to enter data.. We have discussed with enumerators to raise discrepencies in data collection, find out missing data and correct messy data. We have stored those data in a database server in the cloud and backed up data localy on daily basis. We have identified that irrigation is the major constraint among banana farmers.
B. DATA ENTRY AND PROCESSING
The data for this report come from Amazon Web Service which is used to store a relational Database (MySQL Server). This datasbase is designed based on a data model conceived in coordination with banana value chain departeemnt. Data management team has been exclusively used to enter data through a user friendly data entry interface. Two validation processes have been set up:
- validation rule using regular expression at data entry level
- validation cross-checking by the Management Information System (MIS) Specialist
We have connected to the database to read datasets using parameters below:
Show me parameters ▼
library(RMySQL)
db <- dbConnect(MySQL(), dbname = "avansedb", host = "localhost",
port = 3306, user = "root",
password = "FDE&fde7")
# Construct the fetching query
query <- sprintf("SELECT tbl_land.*, tbl_parcel.parcel_code FROM tbl_parcel INNER JOIN tbl_land ON tbl_parcel.parcel_id =
tbl_land.parcel_id;")
# Submit the fetch query and disconnect
tbl_land <- dbGetQuery(db, query)
dbDisconnect(db)
## [1] TRUE
The database is divided into six main tables with one to many relationships between the first table and the others listed below:
- tbl_land: which deals with Single Response Categorical Variables (SRCV) e.g Land tenure, Sol type
- tbl_esp_domin: which deals only with Espece dominantes par ordre d’importance Multiple Response Categorical Variable (MRCV)
- tbl_contr_prio: which deals only with Contraintes prioritaires Multiple Response Categorical Variable (MRCV)
- tbl_avez_fait: which deals only with Qu’avez-vous fait Multiple Response Categorical Variable (MRCV)
- tbl_face_contr: which deals only with Comment avez-vous fait face a cette contrainte Multiple Response Categorical Variable (MRCV)
- tbl_cult_princ: which deals only with Deux principales cultures de la zone Multiple Response Categorical Variable (MRCV)
B. ANALYSIS
1. Single Response Categorical Variable(SRCV) analysis
1.1 Land tenure versus Priority constraint
In this exercise, we are going to test if two categorical variables
Land tenure versus
Priority constraint have a significant correlation between them. The relationship table is illustrated below. It shows the number of case an event (
Priority constraint) is observed among farmers grouped by land tenure.
Show me R code ▼
tb <- table(tbl_land$statut_fonc, tbl_land$contr_prio)
tb1 <- cbind(tb, somme1=rowSums(tb))
tb2 <- rbind(tb1, somme2=colSums(tb1))
knitr::kable(tb2)
| fermier |
0 |
10 |
0 |
0 |
10 |
| gerant |
0 |
8 |
0 |
0 |
8 |
| heritier en indivision |
0 |
9 |
0 |
0 |
9 |
| metayer |
0 |
16 |
0 |
0 |
16 |
| proprietaire |
2 |
193 |
4 |
1 |
200 |
| somme2 |
2 |
236 |
4 |
1 |
243 |
The table shows
Land tenure versus
Priority constraint. It says that
priority constraint is encountered among 157 tenant farmers. Though this number comes from an exploratory output, it shows a signifcant different between the importance of priority among tenant and others. We cannot ascertain without a statistic test there’s a signicant different between means of tenant and others, however we can affirm that it seems that there’s a huge difference betwen the frequency of tenants priority and other farmers.
Show me R code ▼
ptb <- prop.table(tb)
ptb1 <- cbind(ptb, somme1=rowSums(ptb))
ptb2 <- rbind(ptb1, somme2=colSums(ptb1))
knitr::kable(round(ptb2, 3))
| fermier |
0.000 |
0.041 |
0.000 |
0.000 |
0.041 |
| gerant |
0.000 |
0.033 |
0.000 |
0.000 |
0.033 |
| heritier en indivision |
0.000 |
0.037 |
0.000 |
0.000 |
0.037 |
| metayer |
0.000 |
0.066 |
0.000 |
0.000 |
0.066 |
| proprietaire |
0.008 |
0.794 |
0.016 |
0.004 |
0.823 |
| somme2 |
0.008 |
0.971 |
0.016 |
0.004 |
1.000 |
|
|
|
|
|
|
| The Chi-square test resul |
t shows the p-valu |
e greater than 0.05 |
which indicates |
a poor correlation be |
tween Land tenure and Priority constraint. Group testing analysis will not be performed in this section. |
| <a id=“aTag2” href=“javas |
cript:toggleAndCha |
ngeText2();“> |
|
|
|
| Show me R code ▼ |
|
|
|
|
|
|
|
|
|
|
|
| <div id=“divToToggle2” st |
yle=“display: none |
;“> |
|
|
|
chisq.test(tbl_land$statut_fonc, tbl_land$contr_prio)
##
## Pearson's Chi-squared test
##
## data: tbl_land$statut_fonc and tbl_land$contr_prio
## X-squared = 1.5496, df = 12, p-value = 0.9998
We can reshape the percentage table by considering
Land tenure as Id variable and
credit agricole,
eau d’irigation,
main d’oeuvre,
semences de qualite, as measure variables. It turns out to have a new table with
value as outcome and
variable,
tenure,
semences de qualite, as predictors
Show me R code ▼
library(reshape2); library(ggplot2)
ptbMelt <- as.data.frame(ptb)
names(ptbMelt) <- c("tenure","constraint","percent")
knitr::kable(ptbMelt)
Show me table ▼
## tenure constraint percent
## 1 fermier credit agricole 0.000000000
## 2 gerant credit agricole 0.000000000
## 3 heritier en indivision credit agricole 0.000000000
## 4 metayer credit agricole 0.000000000
## 5 proprietaire credit agricole 0.008230453
## 6 fermier eau d'irrigation 0.041152263
## 7 gerant eau d'irrigation 0.032921811
## 8 heritier en indivision eau d'irrigation 0.037037037
## 9 metayer eau d'irrigation 0.065843621
## 10 proprietaire eau d'irrigation 0.794238683
## 11 fermier main d'oeuvre 0.000000000
## 12 gerant main d'oeuvre 0.000000000
## 13 heritier en indivision main d'oeuvre 0.000000000
## 14 metayer main d'oeuvre 0.000000000
## 15 proprietaire main d'oeuvre 0.016460905
## 16 fermier semences de qualite 0.000000000
## 17 gerant semences de qualite 0.000000000
## 18 heritier en indivision semences de qualite 0.000000000
## 19 metayer semences de qualite 0.000000000
## 20 proprietaire semences de qualite 0.004115226

The exploratory analysis of the percent value shows that it seems that there’s a significant difference in mean betwen water access constraint and others. For this exercice group testing analysis will not be performed.
1.2 Land tenure versus System of culture.
In this exercise, we are going to test if two categorical variables Land tenure versus system of culture have a significant correlation between them. The relationship table is illustrated below. It shows the number of case an event (System of culture) is observed among farmers grouped by land tenure.
| fermier |
1 |
1 |
8 |
0 |
10 |
| gerant |
0 |
0 |
5 |
3 |
8 |
| heritier en indivision |
0 |
0 |
9 |
0 |
9 |
| metayer |
1 |
0 |
15 |
0 |
16 |
| proprietaire |
58 |
9 |
111 |
21 |
199 |
| somme2 |
60 |
10 |
148 |
24 |
242 |
The table shows Land tenure versus System of culture. It says that System of culture is encountered among 94 tenant farmers. Though this number comes from an exploratory output, it shows a signifcant different between the importance of priority among tenant and others.
| fermier |
0.004 |
0.004 |
0.033 |
0.000 |
0.041 |
| gerant |
0.000 |
0.000 |
0.021 |
0.012 |
0.033 |
| heritier en indivision |
0.000 |
0.000 |
0.037 |
0.000 |
0.037 |
| metayer |
0.004 |
0.000 |
0.062 |
0.000 |
0.066 |
| proprietaire |
0.240 |
0.037 |
0.459 |
0.087 |
0.822 |
| somme2 |
0.248 |
0.041 |
0.612 |
0.099 |
1.000 |
The Chi-square test result shows the p-value greater than 0.05 which denotes a poor correlation between Land tenure and System of culture. Group testing analysis will not be performed in this section.
##
## Pearson's Chi-squared test
##
## data: tbl_land$statut_fonc and tbl_land$syst_culture
## X-squared = 27.32, df = 12, p-value = 0.006947
We can reshape the percentage table by considering
Land tenure as Id variable and
agroforesterie,
association,
monoculture, as measure variables. It turns out to have a new table with
value as outcome and
variable,
tenure, as predictors
Show me table ▼
## tenure system_culture percent
## 6 fermier agroforesterie 0.004132231
## 7 gerant agroforesterie 0.000000000
## 8 heritier en indivision agroforesterie 0.000000000
## 9 metayer agroforesterie 0.000000000
## 10 proprietaire agroforesterie 0.037190083
## 11 fermier association 0.033057851
## 12 gerant association 0.020661157
## 13 heritier en indivision association 0.037190083
## 14 metayer association 0.061983471
## 15 proprietaire association 0.458677686
## 16 fermier monoculture 0.000000000
## 17 gerant monoculture 0.012396694
## 18 heritier en indivision monoculture 0.000000000
## 19 metayer monoculture 0.000000000
## 20 proprietaire monoculture 0.086776860

The exploratory analysis of the percent value shows that it seems that there’s a significant difference in mean betwen association system and others. For this exercice group testing analysis will not be performed.
1.3 Land tenure versus degree of involvement
In this exercise, we are going to test if two categorical variables Land tenure versus degree of involvement have a significant correlation between them. The relationship table is illustrated below. It shows the number of case an event (degree of involvement) is observed among farmers grouped by land tenure.
| fermier |
0 |
0 |
0 |
5 |
1 |
2 |
2 |
10 |
| gerant |
1 |
0 |
0 |
6 |
0 |
1 |
0 |
8 |
| heritier en indivision |
0 |
0 |
1 |
7 |
0 |
0 |
1 |
9 |
| metayer |
0 |
1 |
0 |
7 |
0 |
4 |
4 |
16 |
| proprietaire |
3 |
2 |
0 |
124 |
0 |
44 |
27 |
200 |
| somme2 |
4 |
3 |
1 |
149 |
1 |
51 |
34 |
243 |
The table shows Land tenure versus Degree of involvement. It says that 25% level of engagment is encountered among 120 tenant farmers. Though this number comes from an exploratory output, it shows a signifcant different between the level of involvement between tenant and others.
| fermier |
0.000 |
0.000 |
0.000 |
0.021 |
0.004 |
0.008 |
0.008 |
0.041 |
| gerant |
0.004 |
0.000 |
0.000 |
0.025 |
0.000 |
0.004 |
0.000 |
0.033 |
| heritier en indivision |
0.000 |
0.000 |
0.004 |
0.029 |
0.000 |
0.000 |
0.004 |
0.037 |
| metayer |
0.000 |
0.004 |
0.000 |
0.029 |
0.000 |
0.016 |
0.016 |
0.066 |
| proprietaire |
0.012 |
0.008 |
0.000 |
0.510 |
0.000 |
0.181 |
0.111 |
0.823 |
| somme2 |
0.016 |
0.012 |
0.004 |
0.613 |
0.004 |
0.210 |
0.140 |
1.000 |
The Chi-square test result shows the p-value greater than 0.05 which denotes a poor correlation between Land tenure and Degree of involvement. Group testing analysis will not be performed in this section.
##
## Pearson's Chi-squared test
##
## data: tbl_land$statut_fonc and tbl_land$niv_eng
## X-squared = 66.221, df = 24, p-value = 8.045e-06
We can reshape the the percentage table by considering
Land tenure as Id variable and
agroforesterie,
association,
monoculture, as measure variables. It turns out to have a new table with
percent as outcome and
Level_involvement,
tenure, as predictors
Show me R code ▼
## tenure level_involvement percent
## 6 fermier 100% 0.000000000
## 7 gerant 100% 0.000000000
## 8 heritier en indivision 100% 0.000000000
## 9 metayer 100% 0.004115226
## 10 proprietaire 100% 0.008230453
## 11 fermier 2% 0.000000000
## 12 gerant 2% 0.000000000
## 13 heritier en indivision 2% 0.004115226
## 14 metayer 2% 0.000000000
## 15 proprietaire 2% 0.000000000
## 16 fermier 25% 0.020576132
## 17 gerant 25% 0.024691358
## 18 heritier en indivision 25% 0.028806584
## 19 metayer 25% 0.028806584
## 20 proprietaire 25% 0.510288066
## 21 fermier 30% 0.004115226
## 22 gerant 30% 0.000000000
## 23 heritier en indivision 30% 0.000000000
## 24 metayer 30% 0.000000000
## 25 proprietaire 30% 0.000000000
## 26 fermier 50% 0.008230453
## 27 gerant 50% 0.004115226
## 28 heritier en indivision 50% 0.000000000
## 29 metayer 50% 0.016460905
## 30 proprietaire 50% 0.181069959
## 31 fermier 75% 0.008230453
## 32 gerant 75% 0.000000000
## 33 heritier en indivision 75% 0.004115226
## 34 metayer 75% 0.016460905
## 35 proprietaire 75% 0.111111111

The exploratory analysis of the percent value shows that it seems that there’s a significant difference in mean betwen association system and others. For this exercice group testing analysis will not be performed.
1.4 Land tenure versus work with farmer
In this exercise, we are going to test if two categorical variables Land tenure versus work with farmer have a significant correlation between them. The relationship table is illustrated below. It shows the number of case an event (work with farmer) is observed among farmers grouped by land tenure.
| fermier |
5 |
5 |
10 |
| gerant |
7 |
1 |
8 |
| heritier en indivision |
5 |
4 |
9 |
| metayer |
4 |
12 |
16 |
| proprietaire |
134 |
66 |
200 |
| somme2 |
155 |
88 |
243 |
The table shows Land tenure versus work with farmer. It says that 155 tenant farmers disagree to work with other farmer. 88 farmers agree to work with their buddies. This is an exploratory analysis that simply says that it seems that more farmers are not on agreement to support others. A statistic test will be performed to verify this hypothesis.
| fermier |
0.021 |
0.021 |
0.041 |
| gerant |
0.029 |
0.004 |
0.033 |
| heritier en indivision |
0.021 |
0.016 |
0.037 |
| metayer |
0.016 |
0.049 |
0.066 |
| proprietaire |
0.551 |
0.272 |
0.823 |
| somme2 |
0.638 |
0.362 |
1.000 |
The Chi-square test result shows the p-value greater than 0.05 which denotes a poor correlation between Land tenure and work with farme.
##
## Pearson's Chi-squared test
##
## data: tbl_land$statut_fonc and tbl_land$niv_eng
## X-squared = 66.221, df = 24, p-value = 8.045e-06
We can reshape the the frequency table by considering
Land tenure as Id variable and
oui,
non, as measure variables. It turns out to have a new table with
frequency as outcome and
responses,
tenure, as predictors
Show me table ▼
## tenure responses frequency
## 1 fermier non 5
## 2 gerant non 7
## 3 heritier en indivision non 5
## 4 metayer non 4
## 5 proprietaire non 134
## 6 fermier oui 5
## 7 gerant oui 1
## 8 heritier en indivision oui 4
## 9 metayer oui 12
## 10 proprietaire oui 66

1.4.1 T-test
As this step we are going to fit a simple linear regression model with frequency as outcome and responses as predictor
Model 1
fit1 <- lm(frequency ~ factor(responses), data=tbMelt)
summary(fit1)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31.0 20.16135 1.5375955 0.1627044
## factor(responses)oui -13.4 28.51245 -0.4699701 0.6509212
First of all we include only responses variable and include the intercept. In other word, we consider non as a linear combination of oui. Notice that The t-test for \(H_0: \beta_{response} = 0\) versus \(H_a: \beta_{response} \neq 0\) has a P-value equal to 0.65 > 0.05. The estimate is -13.4. The test statistic is interestingly significative. Notice that we have only factor(responses)oui, the positive response in the table. It is because R has elected to choose non: the negative response as the reference category. The number -13.4 is the estimated decrease in frequency comparing oui response to non response.
Confidence interval
alpha <- 0.05
n <- nrow(tbMelt)
pe <- coef(summary(fit1))["factor(responses)oui", "Estimate"]
se <- coef(summary(fit1))["factor(responses)oui", "Std. Error"]
tstat <- qt(1 - alpha/2, n - 2) # n - 2 statistic test for model with intercept and slope
pe + c(-1, 1) * (se * tstat)
## [1] -79.14984 52.34984
If we were willing to choose the model 1 as our best model, then the confidence interval for the -13.4 frequency decrease difference would be -79.14984 and 52.34984
Model 2
fit2 <- lm(frequency ~ factor(responses) - 1, data=tbMelt)
summary(fit2)$coef
## Estimate Std. Error t value Pr(>|t|)
## factor(responses)non 31.0 20.16135 1.5375955 0.1627044
## factor(responses)oui 17.6 20.16135 0.8729575 0.4081234
Here we omit the intercept, then the model includes both oui and non responses. non is not a linear combination of oui, there’s 2 means in the dataset. The expected value of the outcome should be the mean for oui or non responses. As we can see in the table oui is about 17.6 and non is about 31.0 and it is clearly illustrated in the t-test below.
t.test(frequency ~ factor(responses), data=tbMelt)$estimate
## mean in group non mean in group oui
## 31.0 17.6
2. Multiple Response Categorical Variable(MRCV) analysis.
Here we retrieve MRCV data from the realtional database based on the one to many relationship using a Structure Query Language(SQL).
Show me queries ▼
library(RMySQL)
db <- dbConnect(MySQL(), dbname = "avansedb", host = "localhost",
port = 3306, user = "root",
password = "FDE&fde7")
# Construct the fetching query
avez_fait <- sprintf("SELECT tbl_land.statut_fonc, tbl_avez_fait.avez_fait
FROM tbl_land INNER JOIN tbl_avez_fait ON tbl_land.parcel_id = tbl_avez_fait.parcel_id;")
contr_prod <- sprintf("SELECT tbl_land.statut_fonc, tbl_contr_prod.contr_prod
FROM tbl_land INNER JOIN tbl_contr_prod ON tbl_land.parcel_id = tbl_contr_prod.parcel_id;")
cult_princ <- sprintf("SELECT tbl_land.statut_fonc, tbl_cult_princ.cult_princ
FROM tbl_land INNER JOIN tbl_cult_princ ON tbl_land.parcel_id = tbl_cult_princ.parcel_id;")
esp_domin <- sprintf("SELECT tbl_land.statut_fonc, tbl_esp_domin.esp_domin
FROM tbl_land INNER JOIN tbl_esp_domin ON tbl_land.parcel_id = tbl_esp_domin.parcel_id;")
face_contr <- sprintf("SELECT tbl_land.statut_fonc, tbl_face_contr.face_contr
FROM tbl_land INNER JOIN tbl_face_contr ON tbl_land.parcel_id = tbl_face_contr.parcel_id;")
# Submit the fetch query and disconnect
qry_avez_fait <- dbGetQuery(db, avez_fait)
qry_contr_prod <- dbGetQuery(db, contr_prod)
qry_cult_princ <- dbGetQuery(db, cult_princ)
qry_esp_domin <- dbGetQuery(db, esp_domin)
qry_face_contr <- dbGetQuery(db, face_contr)
dbDisconnect(db)
## [1] TRUE
2.1 Land tenure versus Farmers mutual aid
In this exercise, we are going to test if two categorical variables
Land tenure versus
Farmers mutual aid have a significant correlation between them. The relationship table is illustrated below. It shows the number of
response obtained in a question among farmers grouped by land tenure.
Show me R code ▼
tb <- table(qry_avez_fait$statut_fonc, qry_avez_fait$avez_fait)
tb1 <- cbind(tb, somme1=rowSums(tb))
tb2 <- rbind(tb1, somme2=colSums(tb1))
knitr::kable(tb2)
| fermier |
2 |
0 |
1 |
1 |
0 |
1 |
2 |
0 |
1 |
1 |
9 |
| gerant |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
| heritier en indivision |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
4 |
| metayer |
3 |
0 |
3 |
2 |
0 |
0 |
2 |
0 |
1 |
0 |
11 |
| proprietaire |
14 |
1 |
15 |
1 |
1 |
2 |
21 |
3 |
0 |
4 |
62 |
| somme2 |
21 |
1 |
20 |
4 |
1 |
4 |
26 |
3 |
2 |
5 |
87 |
The table shows
Land tenure versus
Farmers mutual aid. It says that
konbit response has a frequency of 21 among tenant farmers. We can also see that the top responses:
konbit,
achat et ou location de pompe d’irrigation,
association de producteurs over others
Show me R code ▼
ptb <- prop.table(tb)
ptb1 <- cbind(ptb, somme1=rowSums(ptb))
ptb2 <- rbind(ptb1, somme2=colSums(ptb1))
knitr::kable(round(ptb2, 3))
| fermier |
0.023 |
0.000 |
0.011 |
0.011 |
0.000 |
0.011 |
0.023 |
0.000 |
0.011 |
0.011 |
0.103 |
| gerant |
0.011 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.011 |
| heritier en indivision |
0.011 |
0.000 |
0.011 |
0.000 |
0.000 |
0.011 |
0.011 |
0.000 |
0.000 |
0.000 |
0.046 |
| metayer |
0.034 |
0.000 |
0.034 |
0.023 |
0.000 |
0.000 |
0.023 |
0.000 |
0.011 |
0.000 |
0.126 |
| proprietaire |
0.161 |
0.011 |
0.172 |
0.011 |
0.011 |
0.023 |
0.241 |
0.034 |
0.000 |
0.046 |
0.713 |
| somme2 |
0.241 |
0.011 |
0.230 |
0.046 |
0.011 |
0.046 |
0.299 |
0.034 |
0.023 |
0.057 |
1.000 |
The Chi-square test result shows the p-value of
0.8632 greater than 0.05 which indicates a poor correlation between
Land tenure and
Farmers mutual aid. Group testing analysis will not be performed in this section.
Show me R code ▼
chisq.test(qry_avez_fait$statut_fonc, qry_avez_fait$avez_fait)
##
## Pearson's Chi-squared test
##
## data: qry_avez_fait$statut_fonc and qry_avez_fait$avez_fait
## X-squared = 26.925, df = 36, p-value = 0.8632
We can reshape the percentage table by considering
Land tenure as Id variable and
achat et ou location de pompe d’irrigation,
association de producteurs,
drainage forage,
konbit,
lutte integree,
participation/affiliation au ffs as measure variables. It turns out to have a new table with
value as outcome and
variable,
tenure, as predictors
Show me R code ▼
library(reshape2); library(ggplot2)
ptbMelt <- as.data.frame(ptb)
names(ptbMelt) <- c("tenure","mutual_aid","percent")
knitr::kable(ptbMelt)
Show me table ▼
tenure mutual_aid percent ———————– ——————————————- ———- fermier achat et ou location de pompe d’irrigation 0.0229885 gerant achat et ou location de pompe d’irrigation 0.0114943 heritier en indivision achat et ou location de pompe d’irrigation 0.0114943 metayer achat et ou location de pompe d’irrigation 0.0344828 proprietaire achat et ou location de pompe d’irrigation 0.1609195 fermier association de producteur 0.0000000 gerant association de producteur 0.0000000 heritier en indivision association de producteur 0.0000000 metayer association de producteur 0.0000000 proprietaire association de producteur 0.0114943 fermier association de producteurs 0.0114943 gerant association de producteurs 0.0000000 heritier en indivision association de producteurs 0.0114943 metayer association de producteurs 0.0344828 proprietaire association de producteurs 0.1724138 fermier aucun 0.0114943 gerant aucun 0.0000000 heritier en indivision aucun 0.0000000 metayer aucun 0.0229885 proprietaire aucun 0.0114943 fermier drainage 0.0000000 gerant drainage 0.0000000 heritier en indivision drainage 0.0000000 metayer drainage 0.0000000 proprietaire drainage 0.0114943 fermier forage 0.0114943 gerant forage 0.0000000 heritier en indivision forage 0.0114943 metayer forage 0.0000000 proprietaire forage 0.0229885 fermier konbit 0.0229885 gerant konbit 0.0000000 heritier en indivision konbit 0.0114943 metayer konbit 0.0229885 proprietaire konbit 0.2413793 fermier lutte integree 0.0000000 gerant lutte integree 0.0000000 heritier en indivision lutte integree 0.0000000 metayer lutte integree 0.0000000 proprietaire lutte integree 0.0344828 fermier na 0.0114943 gerant na 0.0000000 heritier en indivision na 0.0000000 metayer na 0.0114943 proprietaire na 0.0000000 fermier participation/ affiliation au ffs 0.0114943 gerant participation/ affiliation au ffs 0.0000000 heritier en indivision participation/ affiliation au ffs 0.0000000 metayer participation/ affiliation au ffs 0.0000000 proprietaire participation/ affiliation au ffs 0.0459770

The exploratory analysis of the percent value shows that it seems that there’s a significant difference in mean betwen water access constraint and others. For this exercice group testing analysis will not be performed.
2.2 Land tenure versus Constraints of production
In this exercise, we are going to test if two categorical variables
Land tenure versus
Constraints of production have a significant correlation between them. The relationship table is illustrated below. It shows the number of
response obtained in a question among farmers grouped by land tenure.
Show me R code ▼
tb <- table(qry_contr_prod$statut_fonc, qry_contr_prod$contr_prod)
tb1 <- cbind(tb, somme1=rowSums(tb))
tb2 <- rbind(tb1, somme2=colSums(tb1))
knitr::kable(tb2)
| fermier |
2 |
0 |
7 |
2 |
10 |
2 |
2 |
2 |
6 |
1 |
0 |
3 |
2 |
3 |
42 |
| gerant |
1 |
0 |
7 |
1 |
8 |
3 |
0 |
0 |
2 |
0 |
0 |
1 |
2 |
3 |
28 |
| heritier en indivision |
1 |
0 |
6 |
0 |
9 |
3 |
3 |
0 |
3 |
0 |
0 |
2 |
2 |
2 |
31 |
| metayer |
6 |
1 |
13 |
6 |
16 |
4 |
0 |
1 |
11 |
0 |
0 |
10 |
4 |
8 |
80 |
| proprietaire |
45 |
2 |
146 |
44 |
202 |
107 |
5 |
34 |
49 |
4 |
1 |
42 |
65 |
47 |
793 |
| somme2 |
55 |
3 |
179 |
53 |
245 |
119 |
10 |
37 |
71 |
5 |
1 |
58 |
75 |
63 |
974 |
The table shows
Land tenure versus
Constraints of production. It says that
eau d’irrigation response has a frequency of 202 among tenant farmers. We can also see that the top responses:
eau d’irrigation,
credit agricole,
formation over others
Show me R code ▼
ptb <- prop.table(tb)
ptb1 <- cbind(ptb, somme1=rowSums(ptb))
ptb2 <- rbind(ptb1, somme2=colSums(ptb1))
knitr::kable(round(ptb2, 3))
| fermier |
0.002 |
0.000 |
0.007 |
0.002 |
0.010 |
0.002 |
0.002 |
0.002 |
0.006 |
0.001 |
0.000 |
0.003 |
0.002 |
0.003 |
0.043 |
| gerant |
0.001 |
0.000 |
0.007 |
0.001 |
0.008 |
0.003 |
0.000 |
0.000 |
0.002 |
0.000 |
0.000 |
0.001 |
0.002 |
0.003 |
0.029 |
| heritier en indivision |
0.001 |
0.000 |
0.006 |
0.000 |
0.009 |
0.003 |
0.003 |
0.000 |
0.003 |
0.000 |
0.000 |
0.002 |
0.002 |
0.002 |
0.032 |
| metayer |
0.006 |
0.001 |
0.013 |
0.006 |
0.016 |
0.004 |
0.000 |
0.001 |
0.011 |
0.000 |
0.000 |
0.010 |
0.004 |
0.008 |
0.082 |
| proprietaire |
0.046 |
0.002 |
0.150 |
0.045 |
0.207 |
0.110 |
0.005 |
0.035 |
0.050 |
0.004 |
0.001 |
0.043 |
0.067 |
0.048 |
0.814 |
| somme2 |
0.056 |
0.003 |
0.184 |
0.054 |
0.252 |
0.122 |
0.010 |
0.038 |
0.073 |
0.005 |
0.001 |
0.060 |
0.077 |
0.065 |
1.000 |
The Chi-square test result shows the p-value of
0.02559 less than 0.05 which indicates a string correlation between
Land tenure and
Farmers mutual aid. Group testing analysis between
eau d’irrigation and
credit agricle will be performed.
Show me R code ▼
chisq.test(qry_contr_prod$statut_fonc, qry_contr_prodt$contr_prod)
##
## Pearson's Chi-squared test
##
## data: qry_contr_prod$statut_fonc and qry_contr_prod$contr_prod
## X-squared = 73.682, df = 52, p-value = 0.02559
We can reshape the frequency table by considering
Land tenure as Id variable and
eau d’irrigation,
credit agricole,
formation, etc., as measure variables. It turns out to have a new table with
value as outcome and
variable,
tenure, as predictors
Show me R code ▼
library(reshape2); library(ggplot2)
tbMelt <- as.data.frame(tb)
names(tbMelt) <- c("tenure","cons_prod","frequency")
knitr::kable(tbMelt)
Show me table ▼
## tenure cons_prod frequency
## 1 fermier acces au marche 2
## 2 gerant acces au marche 1
## 3 heritier en indivision acces au marche 1
## 4 metayer acces au marche 6
## 5 proprietaire acces au marche 45
## 6 fermier breche de la riviere 0
## 7 gerant breche de la riviere 0
## 8 heritier en indivision breche de la riviere 0
## 9 metayer breche de la riviere 1
## 10 proprietaire breche de la riviere 2
## 11 fermier credit agricole 7
## 12 gerant credit agricole 7
## 13 heritier en indivision credit agricole 6
## 14 metayer credit agricole 13
## 15 proprietaire credit agricole 146
## 16 fermier drainage 2
## 17 gerant drainage 1
## 18 heritier en indivision drainage 0
## 19 metayer drainage 6
## 20 proprietaire drainage 44
## 21 fermier eau d'irrigation 10
## 22 gerant eau d'irrigation 8
## 23 heritier en indivision eau d'irrigation 9
## 24 metayer eau d'irrigation 16
## 25 proprietaire eau d'irrigation 202
## 26 fermier formation 2
## 27 gerant formation 3
## 28 heritier en indivision formation 3
## 29 metayer formation 4
## 30 proprietaire formation 107
## 31 fermier inondation 2
## 32 gerant inondation 0
## 33 heritier en indivision inondation 3
## 34 metayer inondation 0
## 35 proprietaire inondation 5
## 36 fermier main d'oeuvre 2
## 37 gerant main d'oeuvre 0
## 38 heritier en indivision main d'oeuvre 0
## 39 metayer main d'oeuvre 1
## 40 proprietaire main d'oeuvre 34
## 41 fermier maladies 6
## 42 gerant maladies 2
## 43 heritier en indivision maladies 3
## 44 metayer maladies 11
## 45 proprietaire maladies 49
## 46 fermier materiel de labourage 1
## 47 gerant materiel de labourage 0
## 48 heritier en indivision materiel de labourage 0
## 49 metayer materiel de labourage 0
## 50 proprietaire materiel de labourage 4
## 51 fermier na 0
## 52 gerant na 0
## 53 heritier en indivision na 0
## 54 metayer na 0
## 55 proprietaire na 1
## 56 fermier rongeurs et insectes 3
## 57 gerant rongeurs et insectes 1
## 58 heritier en indivision rongeurs et insectes 2
## 59 metayer rongeurs et insectes 10
## 60 proprietaire rongeurs et insectes 42
## 61 fermier semences de qualite 2
## 62 gerant semences de qualite 2
## 63 heritier en indivision semences de qualite 2
## 64 metayer semences de qualite 4
## 65 proprietaire semences de qualite 65
## 66 fermier vol de recoltes 3
## 67 gerant vol de recoltes 3
## 68 heritier en indivision vol de recoltes 2
## 69 metayer vol de recoltes 8
## 70 proprietaire vol de recoltes 47

2.2.1 T-test
As this step we are going to fit a simple linear regression model with frequency as outcome and Constraints of production as predictor. We subset only eau d’irrigation, credit agricole responses to perfrom group-testing analysis.
Model
contpd <- subset(tbMelt, cons_prod == c("eau d'irrigation", "credit agricole"))
fit1 <- lm(frequency ~ factor(cons_prod) - 1, data=contpd)
summary(fit1)$coef
## Estimate Std. Error t value Pr(>|t|)
## factor(cons_prod)credit agricole 10.00000 64.19069 0.1557858 0.8860942
## factor(cons_prod)eau d'irrigation 73.66667 52.41148 1.4055446 0.2545209
Here we omit the intercept, then the model includes both eau d’irrigation and credit agricole responses. eau d’irrigation is not a linear combination of credit agricole, there’s 2 means in the dataset. The expected value of the outcome should be the mean for eau d’irrigation or credit agricole responses. As we can see in the table eau d’irrigation is about 17.6 and credit agricole is about 31.0 and it is clearly illustrated in the t-test below.
t.test(frequency ~ factor(cons_prod) - 1, data=contpd)
##
## Welch Two Sample t-test
##
## data: frequency by factor(cons_prod)
## t = -0.99112, df = 2.0087, p-value = 0.4257
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -338.9095 211.5762
## sample estimates:
## mean in group credit agricole mean in group eau d'irrigation
## 10.00000 73.66667
2.3 Land tenure versus Most frequent species
In this exercise, we are going to test if two categorical variables
Land tenure versus
most_frequent_species have a significant correlation between them. The relationship table is illustrated below. It shows the number of
response obtained in a question among farmers grouped by land tenure.
Show me R code ▼
tb <- table(qry_esp_domin$statut_fonc, qry_esp_domin$esp_domin)
tb1 <- cbind(tb, somme1=rowSums(tb))
tb2 <- rbind(tb1, somme2=colSums(tb1))
knitr::kable(tb2)
| fermier |
0 |
0 |
1 |
1 |
8 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
1 |
3 |
0 |
1 |
3 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
2 |
26 |
| gerant |
0 |
0 |
0 |
0 |
6 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
13 |
| heritier en indivision |
1 |
1 |
0 |
0 |
6 |
0 |
1 |
0 |
0 |
0 |
7 |
0 |
0 |
3 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
23 |
| metayer |
0 |
0 |
0 |
0 |
15 |
0 |
0 |
0 |
0 |
0 |
10 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
34 |
| proprietaire |
1 |
4 |
2 |
1 |
101 |
1 |
1 |
7 |
4 |
1 |
54 |
3 |
7 |
39 |
3 |
0 |
46 |
1 |
1 |
11 |
1 |
8 |
6 |
1 |
7 |
3 |
314 |
| somme2 |
2 |
5 |
3 |
2 |
136 |
1 |
2 |
7 |
4 |
1 |
78 |
3 |
10 |
49 |
3 |
2 |
54 |
1 |
4 |
11 |
1 |
11 |
7 |
1 |
7 |
5 |
410 |
The table shows
Land tenure versus
Most frequent species. It says that
banana response has a frequency of 101 among tenant farmers. We can also see that the top responses:
banana,
haricot,
manioc over others
Show me R code ▼
ptb <- prop.table(tb)
ptb1 <- cbind(ptb, somme1=rowSums(ptb))
ptb2 <- rbind(ptb1, somme2=colSums(ptb1))
knitr::kable(round(ptb2, 3))
| fermier |
0.000 |
0.000 |
0.002 |
0.002 |
0.020 |
0.000 |
0.000 |
0.000 |
0.00 |
0.000 |
0.010 |
0.000 |
0.002 |
0.007 |
0.000 |
0.002 |
0.007 |
0.000 |
0.002 |
0.000 |
0.000 |
0.002 |
0.000 |
0.000 |
0.000 |
0.005 |
0.063 |
| gerant |
0.000 |
0.000 |
0.000 |
0.000 |
0.015 |
0.000 |
0.000 |
0.000 |
0.00 |
0.000 |
0.007 |
0.000 |
0.002 |
0.002 |
0.000 |
0.000 |
0.002 |
0.000 |
0.002 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.032 |
| heritier en indivision |
0.002 |
0.002 |
0.000 |
0.000 |
0.015 |
0.000 |
0.002 |
0.000 |
0.00 |
0.000 |
0.017 |
0.000 |
0.000 |
0.007 |
0.000 |
0.000 |
0.005 |
0.000 |
0.000 |
0.000 |
0.000 |
0.002 |
0.002 |
0.000 |
0.000 |
0.000 |
0.056 |
| metayer |
0.000 |
0.000 |
0.000 |
0.000 |
0.037 |
0.000 |
0.000 |
0.000 |
0.00 |
0.000 |
0.024 |
0.000 |
0.002 |
0.007 |
0.000 |
0.002 |
0.005 |
0.000 |
0.002 |
0.000 |
0.000 |
0.002 |
0.000 |
0.000 |
0.000 |
0.000 |
0.083 |
| proprietaire |
0.002 |
0.010 |
0.005 |
0.002 |
0.246 |
0.002 |
0.002 |
0.017 |
0.01 |
0.002 |
0.132 |
0.007 |
0.017 |
0.095 |
0.007 |
0.000 |
0.112 |
0.002 |
0.002 |
0.027 |
0.002 |
0.020 |
0.015 |
0.002 |
0.017 |
0.007 |
0.766 |
| somme2 |
0.005 |
0.012 |
0.007 |
0.005 |
0.332 |
0.002 |
0.005 |
0.017 |
0.01 |
0.002 |
0.190 |
0.007 |
0.024 |
0.120 |
0.007 |
0.005 |
0.132 |
0.002 |
0.010 |
0.027 |
0.002 |
0.027 |
0.017 |
0.002 |
0.017 |
0.012 |
1.000 |
The Chi-square test result shows the p-value of
2.2e-16 less than 0.05 which indicates a string correlation between
Land tenure and
Most frequent species. Group testing analysis between
banana and
haricot will be performed.
Show me R code ▼
chisq.test(qry_esp_domin$statut_fonc, qry_esp_domin$esp_domin)
##
## Pearson's Chi-squared test
##
## data: qry_esp_domin$esp_domin and qry_esp_domin$esp_domin
## X-squared = 10250, df = 625, p-value < 2.2e-16
We can reshape the frequency table by considering
Land tenure as Id variable and
banana,
haricot,
manico, etc., as measure variables. It turns out to have a new table with
value as outcome and
variable,
tenure, as predictors
Show me R code ▼
library(reshape2); library(ggplot2)
tbMelt <- as.data.frame(ptb)
names(tbMelt) <- c("tenure","species","frequency")
knitr::kable(tbMelt)
Show me table ▼
tenure species frequency ———————– —————- ———- fermier arachide 0.0000000 gerant arachide 0.0000000 heritier en indivision arachide 0.0024390 metayer arachide 0.0000000 proprietaire arachide 0.0024390 fermier arbre a pain 0.0000000 gerant arbre a pain 0.0000000 heritier en indivision arbre a pain 0.0024390 metayer arbre a pain 0.0000000 proprietaire arbre a pain 0.0097561 fermier arbre veritable 0.0024390 gerant arbre veritable 0.0000000 heritier en indivision arbre veritable 0.0000000 metayer arbre veritable 0.0000000 proprietaire arbre veritable 0.0048780 fermier avocat 0.0024390 gerant avocat 0.0000000 heritier en indivision avocat 0.0000000 metayer avocat 0.0000000 proprietaire avocat 0.0024390 fermier banane 0.0195122 gerant banane 0.0146341 heritier en indivision banane 0.0146341 metayer banane 0.0365854 proprietaire banane 0.2463415 fermier bois de chene 0.0000000 gerant bois de chene 0.0000000 heritier en indivision bois de chene 0.0000000 metayer bois de chene 0.0000000 proprietaire bois de chene 0.0024390 fermier cacaoyer 0.0000000 gerant cacaoyer 0.0000000 heritier en indivision cacaoyer 0.0024390 metayer cacaoyer 0.0000000 proprietaire cacaoyer 0.0024390 fermier canne a sucre 0.0000000 gerant canne a sucre 0.0000000 heritier en indivision canne a sucre 0.0000000 metayer canne a sucre 0.0000000 proprietaire canne a sucre 0.0170732 fermier canne sucre 0.0000000 gerant canne sucre 0.0000000 heritier en indivision canne sucre 0.0000000 metayer canne sucre 0.0000000 proprietaire canne sucre 0.0097561 fermier gombo 0.0000000 gerant gombo 0.0000000 heritier en indivision gombo 0.0000000 metayer gombo 0.0000000 proprietaire gombo 0.0024390 fermier haricot 0.0097561 gerant haricot 0.0073171 heritier en indivision haricot 0.0170732 metayer haricot 0.0243902 proprietaire haricot 0.1317073 fermier haricot noir 0.0000000 gerant haricot noir 0.0000000 heritier en indivision haricot noir 0.0000000 metayer haricot noir 0.0000000 proprietaire haricot noir 0.0073171 fermier igname 0.0024390 gerant igname 0.0024390 heritier en indivision igname 0.0000000 metayer igname 0.0024390 proprietaire igname 0.0170732 fermier mais 0.0073171 gerant mais 0.0024390 heritier en indivision mais 0.0073171 metayer mais 0.0073171 proprietaire mais 0.0951220 fermier malanga 0.0000000 gerant malanga 0.0000000 heritier en indivision malanga 0.0000000 metayer malanga 0.0000000 proprietaire malanga 0.0073171 fermier manguier 0.0024390 gerant manguier 0.0000000 heritier en indivision manguier 0.0000000 metayer manguier 0.0024390 proprietaire manguier 0.0000000 fermier manioc 0.0073171 gerant manioc 0.0024390 heritier en indivision manioc 0.0048780 metayer manioc 0.0048780 proprietaire manioc 0.1121951 fermier palmiste 0.0000000 gerant palmiste 0.0000000 heritier en indivision palmiste 0.0000000 metayer palmiste 0.0000000 proprietaire palmiste 0.0024390 fermier papayer 0.0024390 gerant papayer 0.0024390 heritier en indivision papayer 0.0000000 metayer papayer 0.0024390 proprietaire papayer 0.0024390 fermier patate douce 0.0000000 gerant patate douce 0.0000000 heritier en indivision patate douce 0.0000000 metayer patate douce 0.0000000 proprietaire patate douce 0.0268293 fermier piment 0.0000000 gerant piment 0.0000000 heritier en indivision piment 0.0000000 metayer piment 0.0000000 proprietaire piment 0.0024390 fermier pois 0.0024390 gerant pois 0.0000000 heritier en indivision pois 0.0024390 metayer pois 0.0024390 proprietaire pois 0.0195122 fermier pois congo 0.0000000 gerant pois congo 0.0000000 heritier en indivision pois congo 0.0024390 metayer pois congo 0.0000000 proprietaire pois congo 0.0146341 fermier pois inconnu 0.0000000 gerant pois inconnu 0.0000000 heritier en indivision pois inconnu 0.0000000 metayer pois inconnu 0.0000000 proprietaire pois inconnu 0.0024390 fermier pois negre 0.0000000 gerant pois negre 0.0000000 heritier en indivision pois negre 0.0000000 metayer pois negre 0.0000000 proprietaire pois negre 0.0170732 fermier taro 0.0048780 gerant taro 0.0000000 heritier en indivision taro 0.0000000 metayer taro 0.0000000 proprietaire taro 0.0073171

C. GEOPROCESSING
C.2 Features
We read GPS tracks per file with the original coordinate system if it exists. We transform set of points from each file into polyline, then into polygon. We add attribute data to spatial polygon by joining MySQL databaase to parcels using
parcel_code variable.
Show R code
require(sp); require(dplyr);library(maptools);library(PBSmapping);library(rgdal);library(rgeos);library(XML)
# GETTING AND PROCESSING .GPX FILES
setwd("P:/Common/GIS/Non saved Plots/crops/Enquete Banane/banana_irrigation")
myfiles <- dir(pattern = "\\.gpx", recursive=TRUE)
# to have unique ID we can write a function using the spChFIDs function from sp:
uniqueID <- function(SPDF){
ID <- tolower(SPDF@data[1,1])
newSPDF <- spChFIDs(SPDF,ID)
return(newSPDF)
}
tryCatch({
myfiles[1] %>%
readOGR(layer=ogrListLayers(myfiles[1])[3]) %>%
SpatialLines2PolySet() %>%
PolySet2SpatialPolygons() %>%
SpatialPolygonsDataFrame(data=data.frame(parcel_id = 1, parcel_code = readOGR(myfiles[1], layer='tracks')@data[1,1],
surveyor=strsplit(unlist(strsplit(myfiles[1],"_"))[3],"/")[[1]][1], device=unlist(strsplit(myfiles[1],"_"))[2],
date_survey = as.Date(strsplit(xmlSApply(xmlRoot(xmlTreeParse
(myfiles[1], useInternal=TRUE))[[1]][[2]], xmlValue), "T")[[1]][1]),
elevation = round(as.numeric(xmlSApply(xmlRoot(xmlTreeParse(myfiles[1], useInternal=TRUE))
[[2]][[3]][[1]][[1]], xmlValue))))) %>% uniqueID() -> targetlayer
targetlayer <- spTransform(targetlayer, CRS("+init=epsg:4326"))
}, error=function(e){cat("ERROR :",conditionMessage(e), "in",myfiles[1],"\n")})
for (i in 2:length(myfiles)) {
tryCatch({
myfiles[i] %>%
readOGR(layer=ogrListLayers(myfiles[1])[3]) %>%
SpatialLines2PolySet() %>%
PolySet2SpatialPolygons() %>%
SpatialPolygonsDataFrame(data=data.frame(parcel_id = i, parcel_code = readOGR(myfiles[i], layer='tracks')@data[1,1],
surveyor=strsplit(unlist(strsplit(myfiles[i],"_"))[3],"/")[[1]][1], device=unlist(strsplit(myfiles[i],"_"))[2],
date_survey = as.Date(strsplit(xmlSApply(xmlRoot(xmlTreeParse
(myfiles[i], useInternal=TRUE))[[1]][[2]], xmlValue), "T")[[1]][1]),
elevation = round(as.numeric(xmlSApply(xmlRoot(xmlTreeParse(myfiles[i], useInternal=TRUE))
[[2]][[3]][[1]][[1]], xmlValue))))) %>% uniqueID() -> newplot
newplot <- spTransform(newplot, CRS("+init=epsg:4326"))
targetlayer <- rbind(targetlayer, newplot)
}, error=function(e){cat("ERROR :",conditionMessage(e), "in",myfiles[i],"\n")})
}
targetlayer <- spTransform(targetlayer, CRS('+proj=utm +zone=18 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0'))
targetlayer$area_ha <- sapply(targetlayer@polygons, function(x) x@Polygons[[1]]@area)*10^-4
centroids <- gCentroid(targetlayer, byid=TRUE)
targetlayer$Longitude <- coordinates(centroids)[ ,1]
targetlayer$Latitude <- coordinates(centroids)[ ,2]
# targetlayer <- spTransform(targetlayer, CRS("+init=epsg:4326"))
In other to better visualize parcels in static maps, we read road and stream network spatial data and reproject them in the UTM zone 18 WGS 84 coordinate system. We also read the Mysql database survey tables that will be joined to spatial parcels for thematic maps purposes.
We calculate the centroid of each parcel within block and retrieve the coordinates within the spatial dataset. The basic idea is to perform a
cluster analysis at parcel level.
Show R code
library(rgdal);library(plyr);library(rgeos)
# plots <- readOGR(dsn = "C:/GIS/NRM/shapefile", "plots",verbose=FALSE)
# plots_utm <- spTransform(plots, CRS('+proj=utm +zone=18
# +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0'))
# # plots_utm$area_m2 <- sapply(plots_utm@polygons, function(x) x@Polygons[[1]]@area)
# plots_utm$area_ha <- sapply(plots_utm@polygons, function(x) x@Polygons[[1]]@area)*10^-4
centroids <- gCentroid(targetlayer, byid=TRUE)
targetlayer$Longitude <- coordinates(centroids)[,1]
targetlayer$Latitude <- coordinates(centroids)[,2]
cl1 <- readRDS("P:/Common/GIS/Non saved Plots/crops/Enquete Banane/banana_irrigation/cl1.rds")
# cl1 <- kmeans(targetlayer@data[,8:9], 15)
targetlayer$block <- cl1$cluster
C.3 More on clustering analysis
k-means clustering is a old technique that was developped quite a while ago, but it remains very useful for summarizing high dimensional data and have a sense of what pattern our hillside parcels show, what parcels is similar to each other.
The basic principle behind k-means clustering is we define what does that mean to things beeing similar to each other, what does that mean to things beeing different to each other. In some sense we define what does that mean to be close, how do we group things together and how we visualize this grouping, and once we visualize this grouping and how do you interpret what we see.
The most important thing is defining what we mean by close. we need a distance metric to define what does that mean to things beeing close to each other because depending on the context two things can seem close but not be very close and in a differnt context, you can have a total different meaning. We use a continuous distance which is like the Euclidean distance, this is like a straight line between two points.
We partition a group of parcels into fifteeen (15) blocks along each river banck and each block is divided into five(5) sub-blocks. Each of this block or group can have a centroid, like a center of gravity around each group. Once we have the centroid, we assign each parcel to each centroid. The basic idea of the algorithm running K-means clustering is that we pick a centroid, assign all the parcels to the centroid and maybe recalcultate the centroid and reassign the parcels. We reiterate back until we reach the solutions illustrated in the graph below.
Show source table of parcels
| 1 |
BB81 |
Surveyors |
0000 |
2015-09-23 |
37 |
0.3698975 |
797786.6 |
2175314 |
9 |
| 2 |
BB82 |
Surveyors |
0000 |
2015-09-23 |
37 |
0.3393158 |
797821.4 |
2175481 |
9 |
| 3 |
BE110 |
Surveyors |
0000 |
2015-10-05 |
33 |
0.4611566 |
798168.6 |
2176103 |
15 |
| 4 |
BE129 |
Surveyors |
0000 |
2015-10-21 |
63 |
0.2290386 |
797502.0 |
2174067 |
3 |
| 5 |
BE132 |
Surveyors |
0000 |
2015-10-22 |
30 |
0.3229674 |
798403.6 |
2175850 |
15 |
| 6 |
BE133 |
Surveyors |
0000 |
2015-10-22 |
30 |
0.3670748 |
798451.9 |
2175966 |
15 |
| 7 |
BE135 |
Surveyors |
0000 |
2015-10-22 |
36 |
0.2517282 |
797784.1 |
2175724 |
9 |
| 8 |
BE136 |
Surveyors |
0000 |
2015-10-22 |
40 |
0.4449029 |
797735.1 |
2175722 |
9 |
| 9 |
BE137 |
Surveyors |
0000 |
2015-10-22 |
41 |
0.3134945 |
797807.3 |
2175644 |
9 |
| 10 |
BE84 |
Surveyors |
0000 |
2015-09-24 |
34 |
0.4853678 |
797964.2 |
2175620 |
9 |
| 11 |
BE85 |
Surveyors |
0000 |
2015-09-24 |
37 |
0.4687581 |
797894.5 |
2175678 |
9 |
| 12 |
BE87 |
Surveyors |
0000 |
2015-09-24 |
37 |
0.4655723 |
798069.2 |
2175834 |
15 |
| 13 |
BE88 |
Surveyors |
0000 |
2015-09-24 |
39 |
0.4614233 |
797992.5 |
2175832 |
15 |
| 14 |
BE89 |
Surveyors |
0000 |
2015-09-24 |
38 |
0.2870350 |
798047.9 |
2175826 |
15 |
| 15 |
BE90 |
Surveyors |
0000 |
2015-09-24 |
39 |
0.4267081 |
798108.0 |
2175881 |
15 |
| 16 |
BE91 |
Surveyors |
0000 |
2015-09-24 |
41 |
0.4747147 |
798161.2 |
2176145 |
15 |
| 17 |
BG30 |
Surveyors |
0000 |
2015-09-17 |
13 |
1.0185772 |
799923.3 |
2183315 |
10 |
| 18 |
BG37 |
Surveyors |
0000 |
2015-10-02 |
16 |
0.5862823 |
799781.7 |
2182614 |
13 |
| 19 |
BG39 |
Surveyors |
0000 |
2015-10-02 |
20 |
0.4627977 |
799888.9 |
2184000 |
10 |
| 20 |
BI1 |
Surveyors |
0000 |
2015-09-16 |
41 |
0.4829093 |
797315.0 |
2174753 |
1 |
| 21 |
BI17 |
Surveyors |
0000 |
2015-09-16 |
49 |
0.1946213 |
798467.5 |
2176231 |
15 |
| 22 |
BO28 |
Surveyors |
0000 |
2015-09-17 |
28 |
0.1323742 |
799669.1 |
2179474 |
2 |
| 23 |
BO29 |
Surveyors |
0000 |
2015-09-17 |
29 |
0.1564953 |
799539.5 |
2179480 |
2 |
| 24 |
BO31 |
Surveyors |
0000 |
2015-09-17 |
24 |
0.2932509 |
799860.5 |
2179370 |
6 |
| 25 |
BO32 |
Surveyors |
0000 |
2015-09-17 |
27 |
0.4233327 |
799827.7 |
2179192 |
6 |
| 26 |
BP121 |
Surveyors |
0000 |
2015-12-21 |
16 |
0.3111106 |
800276.2 |
2182467 |
13 |
| 27 |
BP85 |
Surveyors |
0000 |
2015-10-06 |
20 |
0.9702267 |
800263.2 |
2182695 |
13 |
| 28 |
BP86 |
Surveyors |
0000 |
2015-10-06 |
23 |
0.3609714 |
800018.9 |
2181928 |
13 |
| 29 |
BP95 |
Surveyors |
0000 |
2015-10-06 |
23 |
0.6453251 |
799240.3 |
2179941 |
2 |
| 30 |
CY52 |
Surveyors |
0000 |
2016-04-18 |
47 |
0.0557906 |
796688.5 |
2173314 |
5 |
| 31 |
PB8 |
Surveyors |
0000 |
2016-03-14 |
38 |
0.2607149 |
796873.2 |
2175103 |
1 |
| 32 |
PC83 |
Surveyors |
0000 |
2016-05-03 |
41 |
0.5597289 |
797301.5 |
2174487 |
3 |
| 33 |
PC84 |
Surveyors |
0000 |
2016-05-03 |
38 |
0.9981977 |
797016.4 |
2174400 |
3 |
| 34 |
PC85 |
Surveyors |
0000 |
2016-05-03 |
39 |
0.2227189 |
796969.8 |
2173926 |
3 |
| 35 |
PC86 |
Surveyors |
0000 |
2016-05-03 |
62 |
0.0395983 |
796977.1 |
2173774 |
3 |
| 36 |
PC95 |
Surveyors |
0000 |
2016-05-05 |
33 |
0.3496474 |
798460.0 |
2176138 |
15 |
| 37 |
PC96 |
Surveyors |
0000 |
2016-05-05 |
34 |
0.3670062 |
798489.8 |
2176106 |
15 |
| 38 |
PC97 |
Surveyors |
0000 |
2016-05-05 |
36 |
0.2998933 |
798357.2 |
2176030 |
15 |
| 39 |
PC98 |
Surveyors |
0000 |
2016-05-05 |
35 |
0.3748700 |
798312.6 |
2176165 |
15 |
| 40 |
PG17 |
Surveyors |
0000 |
2016-04-05 |
21 |
0.6327460 |
799636.9 |
2180665 |
11 |
| 41 |
PG18 |
Surveyors |
0000 |
2016-04-05 |
18 |
0.6298089 |
800651.1 |
2180930 |
11 |
| 42 |
PG48 |
Surveyors |
0000 |
2016-04-10 |
8 |
0.4602727 |
800074.4 |
2181860 |
13 |
| 43 |
PG5 |
Surveyors |
0000 |
2016-04-04 |
88 |
0.4288012 |
800646.9 |
2182194 |
13 |
| 44 |
PG63 |
Surveyors |
0000 |
2016-04-15 |
2 |
0.5042925 |
799902.6 |
2183641 |
10 |
| 45 |
PG64 |
Surveyors |
0000 |
2016-04-15 |
1 |
0.6336773 |
799590.6 |
2184491 |
10 |
| 46 |
PG66 |
Surveyors |
0000 |
2016-04-15 |
6 |
0.4094001 |
800800.1 |
2184439 |
10 |
| 47 |
PG9 |
Surveyors |
0000 |
2016-04-04 |
19 |
2.4037621 |
800788.1 |
2180528 |
11 |
| 48 |
PH128 |
Surveyors |
0000 |
2016-04-08 |
29 |
0.5106048 |
799462.7 |
2178053 |
7 |
| 49 |
PH131 |
Surveyors |
0000 |
2016-04-08 |
26 |
0.1245079 |
799287.4 |
2177871 |
7 |
| 50 |
PH140 |
Surveyors |
0000 |
2016-04-23 |
46 |
0.6483754 |
797363.4 |
2174365 |
3 |
| 51 |
PH141 |
Surveyors |
0000 |
2016-04-23 |
44 |
0.7616464 |
797263.0 |
2174388 |
3 |
| 52 |
PH144 |
Surveyors |
0000 |
2016-04-23 |
46 |
0.5214390 |
797314.9 |
2174281 |
3 |
| 53 |
PH15 |
Surveyors |
0000 |
2016-03-03 |
48 |
0.6267823 |
797374.1 |
2174235 |
3 |
| 54 |
PH16 |
Surveyors |
0000 |
2016-03-03 |
53 |
0.3886160 |
797257.6 |
2174070 |
3 |
| 55 |
PH17 |
Surveyors |
0000 |
2016-03-03 |
53 |
0.6218623 |
797301.1 |
2174122 |
3 |
| 56 |
PH18 |
Surveyors |
0000 |
2016-03-03 |
54 |
0.2686823 |
797217.4 |
2174065 |
3 |
| 57 |
PH19 |
Surveyors |
0000 |
2016-03-03 |
55 |
0.3168486 |
797186.6 |
2174055 |
3 |
| 58 |
PH20 |
Surveyors |
0000 |
2016-03-03 |
55 |
0.4468397 |
797144.8 |
2174050 |
3 |
| 59 |
PH24 |
Surveyors |
0000 |
2016-03-10 |
37 |
0.3398648 |
797526.4 |
2175079 |
9 |
| 60 |
PH25 |
Surveyors |
0000 |
2016-03-10 |
41 |
0.5894930 |
797352.7 |
2174807 |
1 |
| 61 |
PH26 |
Surveyors |
0000 |
2016-03-10 |
37 |
0.2439209 |
797466.2 |
2175168 |
9 |
| 62 |
PH27 |
Surveyors |
0000 |
2016-03-10 |
43 |
0.4554022 |
797247.0 |
2174787 |
1 |
| 63 |
PH28 |
Surveyors |
0000 |
2016-03-10 |
38 |
0.1967336 |
797505.3 |
2175059 |
9 |
| 64 |
PH29 |
Surveyors |
0000 |
2016-03-10 |
38 |
0.2109482 |
797601.7 |
2175033 |
9 |
| 65 |
PH32 |
Surveyors |
0000 |
2016-03-10 |
47 |
0.9597599 |
797107.5 |
2174699 |
1 |
| 66 |
PH33 |
Surveyors |
0000 |
2016-03-10 |
47 |
0.3908270 |
797190.6 |
2174708 |
1 |
| 67 |
PH34 |
Surveyors |
0000 |
2016-03-10 |
53 |
0.6558751 |
797122.9 |
2174303 |
3 |
| 68 |
PH35 |
Surveyors |
0000 |
2016-03-10 |
55 |
0.3193465 |
797137.6 |
2174394 |
3 |
| 69 |
PH36 |
Surveyors |
0000 |
2016-03-10 |
52 |
0.6447643 |
797408.2 |
2174319 |
3 |
| 70 |
PH50 |
Surveyors |
0000 |
2016-03-14 |
35 |
0.3329014 |
797540.2 |
2175155 |
9 |
| 71 |
PH55 |
Surveyors |
0000 |
2016-03-14 |
40 |
0.3191883 |
797232.4 |
2174743 |
1 |
| 72 |
PH56 |
Surveyors |
0000 |
2016-03-14 |
39 |
0.3705949 |
797175.6 |
2174773 |
1 |
| 73 |
PH57 |
Surveyors |
0000 |
2016-03-14 |
42 |
1.0328366 |
797026.3 |
2174645 |
3 |
| 74 |
PH58 |
Surveyors |
0000 |
2016-03-14 |
43 |
0.7292897 |
797099.1 |
2174540 |
3 |
| 75 |
PH59 |
Surveyors |
0000 |
2016-03-14 |
52 |
0.3782017 |
798150.6 |
2174723 |
9 |
| 76 |
PH90 |
Surveyors |
0000 |
2016-03-17 |
35 |
0.4407117 |
799657.2 |
2177803 |
7 |
| 77 |
PH97 |
Surveyors |
0000 |
2016-03-17 |
32 |
0.3029773 |
799218.8 |
2177665 |
7 |
| 78 |
PH98 |
Surveyors |
0000 |
2016-03-17 |
32 |
0.0936866 |
799329.4 |
2177534 |
7 |
| 79 |
PI103 |
Surveyors |
0000 |
2016-04-12 |
35 |
0.4171376 |
797133.9 |
2175899 |
9 |
| 80 |
PI145 |
Surveyors |
0000 |
2016-04-23 |
31 |
1.5924165 |
798863.3 |
2177589 |
14 |
| 81 |
PI146 |
Surveyors |
0000 |
2016-04-23 |
32 |
0.5894249 |
798944.7 |
2177709 |
14 |
| 82 |
PI147 |
Surveyors |
0000 |
2016-04-23 |
38 |
0.6854169 |
798714.9 |
2177670 |
14 |
| 83 |
PI149 |
Surveyors |
0000 |
2016-04-23 |
34 |
0.2480299 |
798352.2 |
2177525 |
14 |
| 84 |
PI150 |
Surveyors |
0000 |
2016-04-23 |
34 |
0.5813972 |
798895.6 |
2177836 |
14 |
| 85 |
PI151 |
Surveyors |
0000 |
2016-04-23 |
29 |
0.6143507 |
798857.1 |
2177881 |
14 |
| 86 |
PI36 |
Surveyors |
0000 |
2016-03-14 |
43 |
0.2665865 |
797208.2 |
2175447 |
9 |
| 87 |
PI37 |
Surveyors |
0000 |
2016-03-14 |
41 |
0.7608272 |
797199.2 |
2175380 |
9 |
| 88 |
PI38 |
Surveyors |
0000 |
2016-03-14 |
41 |
0.5090946 |
797308.8 |
2175129 |
9 |
| 89 |
PI39 |
Surveyors |
0000 |
2016-03-14 |
43 |
0.2278814 |
796934.3 |
2175242 |
1 |
| 90 |
PI51 |
Surveyors |
0000 |
2016-03-14 |
33 |
0.1492495 |
797639.3 |
2175487 |
9 |
| 91 |
PI52 |
Surveyors |
0000 |
2016-03-14 |
35 |
0.2948003 |
797626.5 |
2175461 |
9 |
| 92 |
PI53 |
Surveyors |
0000 |
2016-03-14 |
30 |
0.2900905 |
797976.0 |
2175724 |
9 |
| 93 |
PI56 |
Surveyors |
0000 |
2016-03-15 |
35 |
0.5092708 |
797235.7 |
2175869 |
9 |
| 94 |
PI57 |
Surveyors |
0000 |
2016-03-15 |
37 |
0.6372532 |
797182.3 |
2175840 |
9 |
| 95 |
PI58 |
Surveyors |
0000 |
2016-03-15 |
39 |
0.1895522 |
797183.9 |
2175658 |
9 |
| 96 |
PI61 |
Surveyors |
0000 |
2016-03-15 |
41 |
0.6728022 |
796845.4 |
2175220 |
1 |
| 97 |
PI62 |
Surveyors |
0000 |
2016-03-15 |
41 |
0.3842316 |
796725.5 |
2174604 |
3 |
| 98 |
PI66 |
Surveyors |
0000 |
2016-03-15 |
41 |
0.3138548 |
797547.5 |
2176497 |
15 |
| 99 |
2016-04-21 19:01:38 |
Surveyors |
0000 |
2016-04-21 |
40 |
0.2787688 |
797094.8 |
2176367 |
15 |
| 100 |
PJ124 |
Surveyors |
0000 |
2016-04-22 |
27 |
0.7633856 |
798671.4 |
2177819 |
14 |
| 101 |
PJ128 |
Surveyors |
0000 |
2016-04-22 |
36 |
4.5068458 |
797653.9 |
2176992 |
15 |
| 102 |
PJ131 |
Surveyors |
0000 |
2016-04-23 |
33 |
0.3029181 |
798098.1 |
2177425 |
14 |
| 103 |
PJ136 |
Surveyors |
0000 |
2016-04-23 |
35 |
0.8158512 |
798402.3 |
2177437 |
14 |
| 104 |
PJ137 |
Surveyors |
0000 |
2016-04-23 |
31 |
0.5501130 |
798679.2 |
2177515 |
14 |
| 105 |
PJ138 |
Surveyors |
0000 |
2016-04-23 |
32 |
0.5516955 |
798543.6 |
2177926 |
14 |
| 106 |
PJ27 |
Surveyors |
0000 |
2016-03-14 |
39 |
0.3409510 |
797780.1 |
2176014 |
15 |
| 107 |
PJ28 |
Surveyors |
0000 |
2016-03-14 |
42 |
1.8151863 |
797654.9 |
2176371 |
15 |
| 108 |
PJ29 |
Surveyors |
0000 |
2016-03-14 |
41 |
0.5246413 |
797449.4 |
2176455 |
15 |
| 109 |
PJ38 |
Surveyors |
0000 |
2016-03-15 |
36 |
0.2878897 |
797081.1 |
2175907 |
9 |
| 110 |
PJ46 |
Surveyors |
0000 |
2016-03-15 |
32 |
0.2500690 |
797267.5 |
2176300 |
15 |
| 111 |
PL10 |
Surveyors |
0000 |
2016-03-15 |
20 |
1.7213342 |
799594.9 |
2181680 |
13 |
| 112 |
PL12 |
Surveyors |
0000 |
2016-03-15 |
28 |
0.3543575 |
800187.2 |
2179690 |
2 |
| 113 |
PL15 |
Surveyors |
0000 |
2016-03-16 |
21 |
1.1306864 |
800063.6 |
2179025 |
6 |
| 114 |
PL16 |
Surveyors |
0000 |
2016-03-16 |
26 |
1.5893170 |
800136.3 |
2178929 |
6 |
| 115 |
PL26 |
Surveyors |
0000 |
2016-03-17 |
14 |
0.5655028 |
800019.1 |
2180008 |
2 |
| 116 |
PL33 |
Surveyors |
0000 |
2016-03-21 |
22 |
0.5870962 |
800293.0 |
2178931 |
6 |
| 117 |
PL6 |
Surveyors |
0000 |
2016-03-15 |
25 |
0.3877626 |
799758.7 |
2180058 |
2 |
| 118 |
PL9 |
Surveyors |
0000 |
2016-03-15 |
20 |
1.4021297 |
799578.9 |
2181792 |
13 |
| 119 |
PL100 |
Dade |
1879 |
2017-03-07 |
25 |
2.3018895 |
800069.5 |
2182333 |
13 |
| 120 |
PL101 |
Dade |
1879 |
2017-03-09 |
-71 |
0.4150962 |
800621.9 |
2182422 |
13 |
| 121 |
PL102 |
Dade |
1879 |
2017-03-09 |
18 |
1.4849216 |
800426.8 |
2182297 |
13 |
| 122 |
PL103 |
Dade |
1879 |
2017-03-09 |
19 |
1.5324692 |
800081.3 |
2182363 |
13 |
| 123 |
PL104 |
Dade |
1879 |
2017-03-09 |
23 |
0.6999545 |
800187.8 |
2182137 |
13 |
| 124 |
PL105 |
Dade |
1879 |
2017-02-15 |
17 |
10.1296857 |
799692.0 |
2179235 |
6 |
| 125 |
PL106 |
Dade |
1879 |
2017-03-21 |
11 |
33.3089202 |
800302.3 |
2183954 |
10 |
| 126 |
PL86 |
Dade |
1879 |
2017-02-14 |
-81 |
1.3188150 |
799883.8 |
2178682 |
6 |
| 127 |
PL88 |
Dade |
1879 |
2017-02-14 |
25 |
1.8070465 |
799760.0 |
2178247 |
7 |
| 128 |
PL87 |
Dade |
1879 |
2017-02-14 |
20 |
0.2669551 |
799933.0 |
2178060 |
7 |
| 129 |
PL89 |
Dade |
1879 |
2017-02-14 |
25 |
0.9025449 |
799848.1 |
2177811 |
7 |
| 130 |
PL90 |
Dade |
1879 |
2017-02-14 |
25 |
1.1945588 |
799785.8 |
2177564 |
7 |
| 131 |
PL91 |
Dade |
1879 |
2017-02-14 |
25 |
0.6172141 |
799712.2 |
2177645 |
7 |
| 132 |
PL92 |
Dade |
1879 |
2017-02-15 |
19 |
0.5694554 |
799575.7 |
2179859 |
2 |
| 133 |
PL93 |
Dade |
1879 |
2017-02-15 |
26 |
3.1161424 |
799739.8 |
2180015 |
2 |
| 134 |
PL94 |
Dade |
1879 |
2017-02-20 |
-17 |
2.4402337 |
799925.7 |
2180032 |
2 |
| 135 |
PL95 |
Dade |
1879 |
2017-02-20 |
21 |
3.6012665 |
799936.9 |
2181687 |
13 |
| 136 |
PL96 |
Dade |
1879 |
2017-02-21 |
28 |
1.0875538 |
799746.8 |
2179640 |
2 |
| 137 |
PL97 |
Dade |
1879 |
2017-02-21 |
24 |
2.7888740 |
799708.5 |
2179777 |
2 |
| 138 |
PL98 |
Dade |
1879 |
2017-02-21 |
24 |
5.8694570 |
800007.8 |
2180933 |
11 |
| 139 |
PL99 |
Dade |
1879 |
2017-02-22 |
25 |
1.1595995 |
800170.8 |
2182069 |
13 |
| 140 |
PB59 |
Jacky |
2475 |
2017-02-20 |
42 |
1.0158630 |
795985.9 |
2174062 |
3 |
| 141 |
PB60 |
Jacky |
2475 |
2017-02-20 |
42 |
0.5361517 |
796074.0 |
2173741 |
3 |
| 142 |
PB61 |
Jacky |
2475 |
2017-02-20 |
38 |
1.1980226 |
796720.6 |
2174412 |
3 |
| 143 |
PB62 |
Jacky |
2475 |
2017-02-20 |
36 |
0.2282103 |
796888.6 |
2174971 |
1 |
| 144 |
PB63 |
Jacky |
2475 |
2017-02-20 |
36 |
0.1113915 |
796921.6 |
2175058 |
1 |
| 145 |
PB64 |
Jacky |
2475 |
2017-02-20 |
37 |
0.6373586 |
796791.2 |
2175100 |
1 |
| 146 |
PB65 |
Jacky |
2475 |
2017-02-20 |
36 |
0.2464003 |
796872.5 |
2175101 |
1 |
| 147 |
PB66 |
Jacky |
2475 |
2017-02-20 |
35 |
0.5166929 |
797087.7 |
2175048 |
1 |
| 148 |
PB67 |
Jacky |
2475 |
2017-02-20 |
36 |
0.4537001 |
796752.7 |
2175178 |
1 |
| 149 |
PB68 |
Jacky |
2475 |
2017-03-03 |
42 |
3.4350382 |
795833.3 |
2174141 |
3 |
| 150 |
PB69 |
Jacky |
2475 |
2017-03-03 |
36 |
0.9694017 |
796789.1 |
2174491 |
3 |
| 151 |
PB70 |
Jacky |
2475 |
2017-03-03 |
36 |
0.8949541 |
796704.2 |
2174618 |
3 |
| 152 |
PB71 |
Jacky |
2475 |
2017-03-03 |
26 |
0.6008178 |
796101.7 |
2175294 |
1 |
| 153 |
PB72 |
Jacky |
2475 |
2017-03-03 |
32 |
0.2888409 |
795936.7 |
2175030 |
1 |
| 154 |
PB73 |
Jacky |
2475 |
2017-03-03 |
30 |
0.4398273 |
796029.3 |
2175149 |
1 |
| 155 |
PB74 |
Jacky |
2475 |
2017-03-09 |
33 |
0.1984920 |
795923.9 |
2174376 |
3 |
| 156 |
PB75 |
Jacky |
2475 |
2017-03-09 |
33 |
0.4723921 |
796633.6 |
2174767 |
1 |
| 157 |
PB76 |
Jacky |
2475 |
2017-03-09 |
32 |
0.3743463 |
796636.1 |
2174732 |
1 |
| 158 |
PB77 |
Jacky |
2475 |
2017-03-09 |
35 |
0.4233772 |
796466.2 |
2174815 |
1 |
| 159 |
PB78 |
Jacky |
2475 |
2017-03-09 |
36 |
0.3915377 |
796724.2 |
2174890 |
1 |
| 160 |
PB79 |
Jacky |
2475 |
2017-03-09 |
34 |
0.9278618 |
796767.4 |
2174830 |
1 |
| 161 |
PB80 |
Jacky |
2475 |
2017-03-09 |
33 |
0.2685445 |
796784.6 |
2174923 |
1 |
| 162 |
PB81 |
Jacky |
2475 |
2017-03-09 |
34 |
0.9308211 |
796522.3 |
2175162 |
1 |
| 163 |
PB82 |
Jacky |
2475 |
2017-03-09 |
34 |
0.2441656 |
796725.0 |
2175099 |
1 |
| 164 |
PB83 |
Jacky |
2475 |
2017-03-09 |
36 |
0.8283077 |
796483.8 |
2174944 |
1 |
| 165 |
PB84 |
Jacky |
2475 |
2017-03-14 |
13 |
0.5324601 |
798842.9 |
2182838 |
13 |
| 166 |
PB85 |
Jacky |
2475 |
2017-03-14 |
9 |
0.1311462 |
798917.5 |
2182877 |
13 |
| 167 |
PB86 |
Jacky |
2475 |
2017-03-14 |
6 |
0.8961008 |
798931.5 |
2182729 |
13 |
| 168 |
PB87 |
Jacky |
2475 |
2017-03-14 |
6 |
0.9005707 |
799082.9 |
2182711 |
13 |
| 169 |
PB88 |
Jacky |
2475 |
2017-03-14 |
7 |
0.4018781 |
798905.4 |
2182838 |
13 |
| 170 |
PB89 |
Jacky |
2475 |
2017-03-14 |
8 |
1.4744770 |
798928.1 |
2183017 |
13 |
| 171 |
PB90 |
Jacky |
2475 |
2017-03-16 |
16 |
0.7573190 |
798755.3 |
2182614 |
13 |
| 172 |
PB91 |
Jacky |
2475 |
2017-03-16 |
14 |
0.2688167 |
798673.3 |
2182408 |
13 |
| 173 |
PB92 |
Jacky |
2475 |
2017-03-16 |
14 |
0.1892760 |
798853.3 |
2182383 |
13 |
| 174 |
PB93 |
Jacky |
2475 |
2017-03-23 |
9 |
0.9865340 |
798943.7 |
2182046 |
13 |
| 175 |
PC106 |
Salony |
2475 |
2017-02-21 |
31 |
0.5178120 |
796781.9 |
2172250 |
5 |
| 176 |
PC107 |
Salony |
2475 |
2017-02-21 |
34 |
0.4626584 |
796770.8 |
2172171 |
5 |
| 177 |
PC108 |
Salony |
2475 |
2017-02-21 |
37 |
0.2790524 |
796860.2 |
2172243 |
5 |
| 178 |
PC109 |
Salony |
2475 |
2017-02-21 |
54 |
1.5932409 |
796896.5 |
2172439 |
5 |
| 179 |
PC110 |
Salony |
2475 |
2017-02-21 |
46 |
0.3000545 |
796784.9 |
2172401 |
5 |
| 180 |
PC111 |
Salony |
2475 |
2017-02-21 |
45 |
0.5568254 |
796843.5 |
2172505 |
5 |
| 181 |
PC112 |
Salony |
2475 |
2017-02-21 |
45 |
0.8075419 |
796809.6 |
2172649 |
5 |
| 182 |
PC113 |
Salony |
2475 |
2017-02-21 |
42 |
0.6813390 |
796671.8 |
2172632 |
5 |
| 183 |
PC113 |
Salony |
2475 |
2017-02-21 |
45 |
0.4806855 |
796742.9 |
2172712 |
5 |
| 184 |
PC115 |
Salony |
2475 |
2017-02-21 |
43 |
0.4344521 |
796579.5 |
2172567 |
5 |
| 185 |
PC116 |
Salony |
2475 |
2017-02-21 |
41 |
0.6228891 |
796492.7 |
2172512 |
5 |
| 186 |
PC117 |
Salony |
2475 |
2017-02-21 |
42 |
1.6500983 |
796386.7 |
2172897 |
5 |
| 187 |
PC118 |
Salony |
2475 |
2017-02-21 |
40 |
1.1257690 |
795778.7 |
2172828 |
5 |
| 188 |
PC119 |
Salony |
2475 |
2017-02-21 |
40 |
0.7583590 |
796136.8 |
2172762 |
5 |
| 189 |
PC120 |
Salony |
2475 |
2017-02-21 |
40 |
0.2660647 |
796325.7 |
2172974 |
5 |
| 190 |
PC121 |
Salony |
2475 |
2017-02-21 |
38 |
0.4938346 |
796172.0 |
2172928 |
5 |
| 191 |
PC122 |
Salony |
2475 |
2017-02-21 |
38 |
0.4170281 |
796161.8 |
2173003 |
5 |
| 192 |
PC124 |
Salony |
2475 |
2017-03-02 |
83 |
0.4117147 |
796726.9 |
2171990 |
5 |
| 193 |
PC125 |
Salony |
2475 |
2017-03-02 |
51 |
0.2448793 |
796737.0 |
2172313 |
5 |
| 194 |
PC126 |
Salony |
2475 |
2017-03-02 |
44 |
0.3897700 |
796154.8 |
2173241 |
5 |
| 195 |
PC127 |
Salony |
2475 |
2017-03-02 |
42 |
0.5362445 |
796284.5 |
2173782 |
3 |
| 196 |
PC128 |
Salony |
2475 |
2017-03-02 |
41 |
1.0361502 |
796356.4 |
2173791 |
3 |
| 197 |
PC129 |
Salony |
2475 |
2017-03-07 |
28 |
7.1521136 |
796030.4 |
2173348 |
5 |
| 198 |
PC130 |
Salony |
2475 |
2017-03-07 |
33 |
0.3642208 |
795884.2 |
2173469 |
5 |
| 199 |
PC131 |
Salony |
2475 |
2017-03-08 |
-21 |
1.1112579 |
796449.2 |
2173949 |
3 |
| 200 |
PC132 |
Salony |
2475 |
2017-03-08 |
23 |
0.6648983 |
796313.2 |
2174016 |
3 |
| 201 |
PC133 |
Salony |
2475 |
2017-03-13 |
42 |
3.8515844 |
795800.4 |
2172740 |
5 |
| 202 |
PC134 |
Salony |
2475 |
2017-03-13 |
40 |
0.5001100 |
795891.5 |
2172781 |
5 |
| 203 |
PC135 |
Salony |
2475 |
2017-03-13 |
41 |
1.2584713 |
795802.5 |
2172864 |
5 |
| 204 |
PC136 |
Salony |
2475 |
2017-03-13 |
35 |
2.0936188 |
795494.3 |
2173373 |
5 |
| 205 |
PC137 |
Salony |
2475 |
2017-03-13 |
32 |
0.3090007 |
796265.0 |
2173781 |
3 |
| 206 |
PC138 |
Salony |
2475 |
2017-03-13 |
35 |
0.2384853 |
796153.1 |
2173616 |
5 |
| 207 |
PC139 |
Salony |
2475 |
2017-03-16 |
14 |
0.3090167 |
798917.4 |
2182519 |
13 |
| 208 |
PC140 |
Salony |
2475 |
2017-03-20 |
46 |
3.7647787 |
796308.3 |
2172795 |
5 |
| 209 |
PC141 |
Salony |
2475 |
2017-03-20 |
43 |
0.7190339 |
796021.0 |
2172879 |
5 |
| 210 |
PC142 |
Salony |
2475 |
2017-03-24 |
21 |
0.4317276 |
796392.4 |
2172510 |
5 |
| 211 |
PC143 |
Salony |
2475 |
2017-02-21 |
24 |
0.5887201 |
796509.2 |
2172685 |
5 |
| 212 |
PC83 |
Salony |
2475 |
2016-05-03 |
41 |
0.5597289 |
797301.5 |
2174487 |
3 |
| 213 |
PC84 |
Salony |
2475 |
2016-05-03 |
38 |
0.9981977 |
797016.4 |
2174400 |
3 |
| 214 |
PC85 |
Salony |
2475 |
2016-05-03 |
39 |
0.2227189 |
796969.8 |
2173926 |
3 |
| 215 |
PC87 |
Salony |
2475 |
2016-05-03 |
43 |
0.1860745 |
796714.9 |
2173801 |
3 |
| 216 |
PH152 |
William |
2477 |
2017-02-14 |
-1 |
0.4029032 |
799453.8 |
2177674 |
7 |
| 217 |
PH154 |
William |
2477 |
2017-02-14 |
8 |
0.6810314 |
799411.4 |
2177577 |
7 |
| 218 |
PH155 |
William |
2477 |
2017-03-14 |
21 |
0.7081612 |
799371.1 |
2177805 |
7 |
| 219 |
PH157 |
William |
2477 |
2017-02-14 |
23 |
0.9479169 |
799374.3 |
2178029 |
7 |
| 220 |
PH161 |
William |
2477 |
2017-02-14 |
24 |
1.9788677 |
799542.8 |
2178107 |
7 |
| 221 |
PH162 |
William |
2477 |
2017-02-15 |
23 |
0.8085156 |
799175.3 |
2177464 |
12 |
| 222 |
PH163 |
William |
2477 |
2017-02-15 |
25 |
0.1568998 |
799076.6 |
2177462 |
12 |
| 223 |
PH175 |
William |
2477 |
2017-02-20 |
24 |
0.8119180 |
799418.9 |
2177325 |
12 |
| 224 |
PH176 |
William |
2477 |
2017-02-20 |
24 |
1.2820211 |
799515.5 |
2177209 |
12 |
| 225 |
PH177 |
William |
2477 |
2017-02-20 |
25 |
5.4227089 |
799331.8 |
2177190 |
12 |
| 226 |
PH178 |
William |
2477 |
2017-02-21 |
40 |
1.4960302 |
798382.8 |
2176660 |
15 |
| 227 |
PH179 |
William |
2477 |
2017-02-21 |
33 |
0.6765275 |
798500.2 |
2176782 |
12 |
| 228 |
PH185 |
William |
2477 |
2017-02-22 |
26 |
3.8113768 |
798913.1 |
2177028 |
12 |
| 229 |
PH190 |
William |
2477 |
2017-03-09 |
15 |
2.9907035 |
797516.3 |
2175399 |
9 |
| 230 |
PH192 |
William |
2477 |
2017-03-09 |
-28 |
5.8256937 |
797733.8 |
2175339 |
9 |
| 231 |
PH194 |
William |
2477 |
2017-03-09 |
28 |
1.8133872 |
797629.7 |
2175621 |
9 |
| 232 |
PH196 |
William |
2477 |
2017-03-14 |
20 |
1.4478675 |
799322.3 |
2177767 |
7 |
| 233 |
PH198 |
William |
2477 |
2017-03-21 |
1 |
12.0610102 |
800286.3 |
2184413 |
10 |
| 234 |
PN122 |
Saurell |
2678 |
2017-02-21 |
12 |
0.2593731 |
797900.1 |
2179295 |
4 |
| 235 |
PN123 |
Saurell |
2678 |
2017-02-21 |
20 |
1.3055124 |
797862.8 |
2178052 |
4 |
| 236 |
PN124 |
Saurell |
2678 |
2017-02-21 |
33 |
0.3012294 |
796338.3 |
2173918 |
3 |
| 237 |
PN125 |
Saurell |
2678 |
2017-02-21 |
32 |
0.2064948 |
796494.9 |
2174076 |
3 |
| 238 |
PN126 |
Saurell |
2678 |
2017-02-23 |
84 |
1.6915022 |
797602.7 |
2175828 |
9 |
| 239 |
PN128 |
Saurell |
2678 |
2017-02-24 |
21 |
0.4703010 |
795991.7 |
2174317 |
3 |
| 240 |
PN129 |
Saurell |
2678 |
2017-02-24 |
36 |
0.5718507 |
796176.1 |
2173529 |
5 |
| 241 |
PN130 |
Saurell |
2678 |
2017-02-24 |
32 |
0.5545662 |
796634.7 |
2175713 |
1 |
| 242 |
PN131 |
Saurell |
2678 |
2017-02-24 |
38 |
0.8264438 |
796430.2 |
2174220 |
3 |
| 243 |
PN133 |
Saurell |
2678 |
2017-03-23 |
32 |
0.4865501 |
797445.9 |
2176456 |
15 |
| 244 |
PN134 |
Saurell |
2678 |
2017-03-23 |
30 |
0.5754396 |
797470.4 |
2176521 |
15 |
| 245 |
PN135 |
Saurell |
2678 |
2017-03-23 |
31 |
0.2471411 |
797474.3 |
2176376 |
15 |
| 246 |
PN137 |
Saurell |
2678 |
2017-03-10 |
38 |
0.4680254 |
795318.1 |
2173821 |
5 |
| 247 |
PN138 |
Saurell |
2678 |
2017-03-10 |
42 |
0.2241948 |
795262.8 |
2173802 |
5 |
| 248 |
PN139 |
Saurell |
2678 |
2017-03-10 |
37 |
0.5807775 |
796307.5 |
2174672 |
1 |
| 249 |
PN140 |
Saurell |
2678 |
2017-03-10 |
35 |
0.1553921 |
797038.1 |
2174969 |
1 |
| 250 |
PN141 |
Saurell |
2678 |
2017-03-14 |
0 |
1.1042040 |
798150.1 |
2178477 |
4 |
| 251 |
PN143 |
Saurell |
2678 |
2017-03-22 |
13 |
1.3129016 |
798486.4 |
2178685 |
8 |
| 252 |
PN144 |
Saurell |
2678 |
2017-03-23 |
19 |
0.3451755 |
798669.3 |
2178720 |
8 |
| 253 |
PN145 |
Saurell |
2678 |
2017-03-22 |
19 |
0.3379934 |
798866.7 |
2178442 |
8 |
| 254 |
PN146 |
Saurell |
2678 |
2017-03-22 |
18 |
0.3110675 |
799059.3 |
2178369 |
8 |
| 255 |
PN147 |
Saurell |
2678 |
2017-03-22 |
17 |
0.2789350 |
799142.4 |
2178610 |
8 |
| 256 |
PN148 |
Saurell |
2678 |
2017-03-22 |
17 |
0.4971431 |
799175.8 |
2178801 |
8 |
| 257 |
PN149 |
Saurell |
2678 |
2017-03-22 |
17 |
0.5104564 |
799159.9 |
2178883 |
8 |
| 258 |
PN150 |
Saurell |
2678 |
2017-03-22 |
19 |
0.6077191 |
799207.6 |
2179014 |
8 |
| 259 |
PN152 |
Saurell |
2678 |
2017-03-22 |
23 |
0.4108126 |
799004.9 |
2178665 |
8 |
| 260 |
PN153 |
Saurell |
2678 |
2017-03-22 |
23 |
0.4791649 |
798762.4 |
2178553 |
8 |
| 261 |
PN154 |
Saurell |
2678 |
2017-03-22 |
23 |
0.9985150 |
798643.4 |
2178097 |
14 |
| 262 |
PN155 |
Saurell |
2678 |
2017-03-22 |
29 |
0.7874865 |
797437.5 |
2177732 |
4 |
| 263 |
PL170 |
Sony |
2683 |
2017-02-14 |
40 |
0.4575451 |
799900.4 |
2179155 |
6 |
| 264 |
PL171 |
Sony |
2683 |
2017-02-14 |
27 |
0.4257624 |
799845.0 |
2179334 |
6 |
| 265 |
PL172 |
Sony |
2683 |
2017-02-14 |
22 |
1.3475021 |
799989.8 |
2178731 |
6 |
| 266 |
PL173 |
Sony |
2683 |
2017-02-14 |
22 |
0.3108698 |
800036.6 |
2178676 |
6 |
| 267 |
PL174 |
Sony |
2683 |
2017-02-14 |
25 |
1.1930763 |
799779.2 |
2178107 |
7 |
| 268 |
PL176 |
Sony |
2683 |
2017-02-15 |
3 |
0.2724759 |
799841.4 |
2178922 |
6 |
| 269 |
PL177 |
Sony |
2683 |
2017-02-15 |
22 |
0.5669726 |
799578.0 |
2179926 |
2 |
| 270 |
PM148 |
Sony |
2683 |
2017-02-15 |
21 |
9.2724102 |
799885.8 |
2180110 |
2 |
| 271 |
PM149 |
Sony |
2683 |
2017-02-15 |
20 |
2.7155139 |
799800.2 |
2180236 |
2 |
| 272 |
PM150 |
Sony |
2683 |
2017-02-15 |
17 |
10.5482544 |
799861.7 |
2180379 |
2 |
| 273 |
PM151 |
Sony |
2683 |
2017-02-20 |
19 |
1.1400532 |
799655.3 |
2180487 |
11 |
| 274 |
PM152 |
Sony |
2683 |
2017-02-20 |
17 |
2.3945536 |
799653.8 |
2180697 |
11 |
| 275 |
PM153 |
Sony |
2683 |
2017-02-20 |
18 |
1.0269060 |
799970.0 |
2181497 |
11 |
| 276 |
PM154 |
Sony |
2683 |
2017-02-21 |
22 |
2.0374778 |
799564.5 |
2179695 |
2 |
| 277 |
PM155 |
Sony |
2683 |
2017-02-21 |
16 |
0.8219811 |
799641.5 |
2180837 |
11 |
| 278 |
PM156 |
Sony |
2683 |
2017-02-21 |
18 |
1.3232777 |
799730.0 |
2180981 |
11 |
| 279 |
PM157 |
Sony |
2683 |
2017-02-21 |
17 |
1.0965264 |
799793.4 |
2181031 |
11 |
| 280 |
PM158 |
Sony |
2683 |
2017-02-21 |
16 |
3.2737632 |
799740.1 |
2180885 |
11 |
| 281 |
PM159 |
Sony |
2683 |
2017-02-22 |
17 |
0.6441936 |
799994.4 |
2181812 |
13 |
| 282 |
PM160 |
Sony |
2683 |
2017-02-22 |
16 |
1.2252986 |
800280.1 |
2181931 |
13 |
| 283 |
PM161 |
Sony |
2683 |
2017-02-22 |
19 |
2.4402334 |
800080.1 |
2181995 |
13 |
| 284 |
PM162 |
Sony |
2683 |
2017-03-07 |
9 |
1.0274081 |
800059.3 |
2182135 |
13 |
| 285 |
PM163 |
Sony |
2683 |
2017-03-09 |
79 |
4.9558112 |
800473.6 |
2182488 |
13 |
| 286 |
PM164 |
Sony |
2683 |
2017-03-09 |
36 |
1.8957602 |
800344.8 |
2182149 |
13 |
| 287 |
PM165 |
Sony |
2683 |
2017-03-09 |
20 |
0.9970357 |
800360.5 |
2182311 |
13 |
| 288 |
PM166 |
Sony |
2683 |
2017-03-09 |
16 |
0.6415417 |
800179.7 |
2182038 |
13 |
| 289 |
PM168 |
Sony |
2683 |
2017-03-14 |
44 |
1.1324209 |
799580.6 |
2180033 |
2 |
| 290 |
PM169 |
Sony |
2683 |
2017-03-15 |
17 |
3.6048127 |
800282.2 |
2183529 |
10 |
| 291 |
PM170 |
Sony |
2683 |
2017-03-22 |
54 |
6.2634717 |
800465.9 |
2183305 |
10 |
| 292 |
PM176 |
Sony |
2683 |
2017-02-14 |
13 |
0.5280835 |
799872.2 |
2178970 |
6 |
| 293 |
PL149 |
James |
2702 |
2017-02-14 |
-93 |
2.1935524 |
799880.8 |
2178784 |
6 |
| 294 |
PL150 |
James |
2702 |
2017-02-14 |
-30 |
0.7813855 |
799914.1 |
2178595 |
6 |
| 295 |
PL151 |
James |
2702 |
2017-02-14 |
1 |
0.4036980 |
800035.9 |
2178564 |
6 |
| 296 |
PL152 |
James |
2702 |
2017-02-14 |
26 |
0.3061471 |
799741.8 |
2178048 |
7 |
| 297 |
PL153 |
James |
2702 |
2017-02-14 |
25 |
1.0046081 |
799830.6 |
2177920 |
7 |
| 298 |
PL154 |
James |
2702 |
2017-02-15 |
97 |
0.6045511 |
800044.3 |
2179112 |
6 |
| 299 |
PL155 |
James |
2702 |
2017-02-15 |
21 |
0.7554322 |
799852.2 |
2179349 |
6 |
| 300 |
PL156 |
James |
2702 |
2017-02-20 |
22 |
1.2420030 |
799265.5 |
2177476 |
7 |
| 301 |
PL157 |
James |
2702 |
2017-02-20 |
28 |
1.3715485 |
799127.3 |
2176783 |
12 |
| 302 |
PL158 |
James |
2702 |
2017-02-20 |
28 |
7.2400530 |
799300.7 |
2176908 |
12 |
| 303 |
PL159 |
James |
2702 |
2017-02-20 |
28 |
3.0221497 |
799161.8 |
2177017 |
12 |
| 304 |
PL160 |
James |
2702 |
2017-02-20 |
27 |
1.4410943 |
799059.3 |
2177057 |
12 |
| 305 |
PL161 |
James |
2702 |
2017-02-20 |
27 |
0.5616789 |
799000.0 |
2177101 |
12 |
| 306 |
PL162 |
James |
2702 |
2017-02-21 |
26 |
8.0227057 |
799918.9 |
2181194 |
11 |
| 307 |
PL163 |
James |
2702 |
2017-02-21 |
19 |
10.8963531 |
800062.2 |
2181498 |
11 |
| 308 |
PL164 |
James |
2702 |
2017-02-21 |
17 |
3.5094180 |
799935.2 |
2181685 |
13 |
| 309 |
PL165 |
James |
2702 |
2017-02-22 |
19 |
0.5075698 |
800182.5 |
2181842 |
13 |
| 310 |
PL166 |
James |
2702 |
2017-03-09 |
12 |
1.7633926 |
800068.0 |
2182222 |
13 |
| 311 |
PL167 |
James |
2702 |
2017-03-09 |
1 |
1.6814252 |
800199.4 |
2182322 |
13 |
| 312 |
PL168 |
James |
2702 |
2017-03-21 |
5 |
3.5904587 |
800557.8 |
2184296 |
10 |
| 313 |
PL169 |
James |
2702 |
2017-03-15 |
2 |
3.0509001 |
800290.4 |
2183330 |
10 |
| 314 |
PJ154 |
Ronald |
2703 |
2017-02-21 |
19 |
0.5681668 |
797059.6 |
2176196 |
15 |
| 315 |
PJ155 |
Ronald |
2703 |
2017-02-21 |
26 |
0.9670791 |
797165.8 |
2176285 |
15 |
| 316 |
PJ156 |
Ronald |
2703 |
2017-02-21 |
33 |
1.8367723 |
796608.1 |
2175971 |
1 |
| 317 |
PJ157 |
Ronald |
2703 |
2017-02-21 |
32 |
0.8046963 |
797018.1 |
2175287 |
1 |
| 318 |
PJ158 |
Ronald |
2703 |
2017-03-08 |
9 |
0.6326584 |
799312.1 |
2178521 |
8 |
| 319 |
PJ159 |
Ronald |
2703 |
2017-03-08 |
15 |
0.6493690 |
799220.5 |
2178420 |
8 |
| 320 |
PJ160 |
Ronald |
2703 |
2017-03-08 |
35 |
47.9930467 |
798611.6 |
2177555 |
14 |
| 321 |
PJ161 |
Ronald |
2703 |
2017-03-20 |
26 |
41.1199430 |
797723.3 |
2177110 |
15 |
| 322 |
PJ162 |
Ronald |
2703 |
2017-03-20 |
24 |
10.1102647 |
798472.7 |
2177250 |
14 |
| 323 |
PJ163 |
Ronald |
2703 |
2017-03-21 |
18 |
22.6130100 |
797750.0 |
2176332 |
15 |
| 324 |
PJ164 |
Ronald |
2703 |
2017-03-24 |
32 |
1.0926038 |
797461.6 |
2176494 |
15 |
| 325 |
PJ165 |
Ronald |
2703 |
2017-03-24 |
33 |
1.3005395 |
796748.4 |
2175728 |
1 |
| 326 |
PJ166 |
Ronald |
2703 |
2017-03-24 |
31 |
0.5112364 |
796824.7 |
2175811 |
1 |
| 327 |
PJ167 |
Ronald |
2703 |
2017-03-24 |
32 |
0.4040842 |
796819.2 |
2175756 |
1 |
| 328 |
PJ168 |
Ronald |
2703 |
2017-03-24 |
31 |
0.4486572 |
797769.8 |
2176018 |
15 |
| 329 |
PJ169 |
Ronald |
2703 |
2017-03-24 |
30 |
1.2642274 |
797778.3 |
2176093 |
15 |
| 330 |
PJ170 |
Ronald |
2703 |
2017-03-24 |
33 |
0.8030205 |
797784.6 |
2176297 |
15 |
| 331 |
PH151 |
Jules |
2706 |
2017-02-14 |
8 |
0.7887698 |
799343.0 |
2177629 |
7 |
| 332 |
PH153 |
Jules |
2706 |
2017-02-14 |
19 |
0.6139334 |
799462.6 |
2177561 |
7 |
| 333 |
PH155 |
Jules |
2706 |
2017-02-14 |
26 |
0.4633851 |
799384.5 |
2177485 |
7 |
| 334 |
PH156 |
Jules |
2706 |
2017-02-14 |
25 |
0.4331824 |
799367.7 |
2178097 |
7 |
| 335 |
PH158 |
Jules |
2706 |
2017-02-14 |
28 |
0.7671747 |
799408.5 |
2178127 |
7 |
| 336 |
PH159 |
Jules |
2706 |
2017-02-14 |
19 |
0.5527435 |
799624.3 |
2177948 |
7 |
| 337 |
PH160 |
Jules |
2706 |
2017-02-14 |
21 |
1.4768977 |
799691.9 |
2177864 |
7 |
| 338 |
PH164 |
Jules |
2706 |
2017-02-15 |
27 |
1.9364626 |
799271.3 |
2177903 |
7 |
| 339 |
PH165 |
Jules |
2706 |
2017-02-15 |
21 |
0.5695963 |
799516.1 |
2177695 |
7 |
| 340 |
PH166 |
Jules |
2706 |
2017-02-15 |
23 |
0.4090867 |
799232.0 |
2177401 |
12 |
| 341 |
PH167 |
Jules |
2706 |
2017-02-15 |
22 |
0.1306246 |
799621.4 |
2177747 |
7 |
| 342 |
PH168 |
Jules |
2706 |
2017-02-15 |
29 |
0.4617585 |
799381.6 |
2177485 |
7 |
| 343 |
PH169 |
Jules |
2706 |
2017-02-15 |
27 |
0.6054790 |
799399.4 |
2177919 |
7 |
| 344 |
PH170 |
Jules |
2706 |
2017-02-15 |
25 |
0.9869616 |
799470.1 |
2177961 |
7 |
| 345 |
PH171 |
Jules |
2706 |
2017-02-15 |
26 |
0.4533431 |
799340.0 |
2177353 |
12 |
| 346 |
PH174 |
Jules |
2706 |
2017-02-22 |
23 |
5.0786814 |
798798.5 |
2176832 |
12 |
| 347 |
PH180 |
Jules |
2706 |
2017-02-20 |
30 |
1.6598196 |
798932.0 |
2176728 |
12 |
| 348 |
PH181 |
Jules |
2706 |
2017-02-21 |
19 |
1.0588297 |
798344.5 |
2176521 |
15 |
| 349 |
PH182 |
Jules |
2706 |
2017-02-21 |
21 |
2.1108650 |
798399.5 |
2176836 |
12 |
| 350 |
PH183 |
Jules |
2706 |
2017-02-21 |
29 |
0.9929163 |
798540.0 |
2176822 |
12 |
| 351 |
PH184 |
Jules |
2706 |
2017-02-21 |
21 |
1.7493757 |
798640.3 |
2176863 |
12 |
| 352 |
PH186 |
Jules |
2706 |
2017-02-22 |
27 |
1.4055676 |
799066.5 |
2176840 |
12 |
| 353 |
PH191 |
Jules |
2706 |
2017-03-09 |
31 |
4.9144106 |
797715.3 |
2175501 |
9 |
| 354 |
PH193 |
Jules |
2706 |
2017-03-09 |
32 |
1.5845539 |
797486.8 |
2175272 |
9 |
| 355 |
PH195 |
Jules |
2706 |
2017-03-09 |
36 |
6.9610346 |
797906.5 |
2175740 |
9 |
| 356 |
PH197 |
Jules |
2706 |
2017-03-21 |
-3 |
26.5421568 |
800293.6 |
2184841 |
10 |
| 357 |
PI176 |
Nixon |
2709 |
2017-02-21 |
29 |
0.5687001 |
796950.2 |
2175040 |
1 |
| 358 |
PI177 |
Nixon |
2709 |
2017-02-21 |
33 |
0.6346774 |
797106.3 |
2175400 |
1 |
| 359 |
PI178 |
Nixon |
2709 |
2017-02-21 |
37 |
1.5649027 |
797062.6 |
2175500 |
1 |
| 360 |
PI179 |
Nixon |
2709 |
2017-02-21 |
35 |
2.2084326 |
796748.2 |
2175506 |
1 |
| 361 |
PI182 |
Nixon |
2709 |
2017-02-23 |
29 |
12.4963706 |
799467.2 |
2181206 |
11 |
| 362 |
PI185 |
Nixon |
2709 |
2017-03-03 |
17 |
8.0080354 |
799456.6 |
2180701 |
11 |
| 363 |
PI186 |
Nixon |
2709 |
2017-03-09 |
36 |
11.8518214 |
797746.0 |
2176556 |
15 |
| 364 |
PI186 |
Nixon |
2709 |
2017-03-08 |
15 |
14.9998408 |
798950.9 |
2178271 |
8 |
| 365 |
PI188 |
Nixon |
2709 |
2017-03-20 |
21 |
8.2021471 |
799406.2 |
2178796 |
8 |
| 366 |
PI189 |
Nixon |
2709 |
2017-03-20 |
23 |
39.3586061 |
799099.6 |
2179238 |
8 |
| 367 |
PI183 |
Nixon |
2709 |
2017-02-23 |
38 |
1.8554463 |
797208.0 |
2175684 |
9 |
| 368 |
PI183 |
Nixon |
2709 |
2017-02-23 |
19 |
10.2406372 |
799281.0 |
2180522 |
11 |
| 369 |
PI180 |
Nixon |
2709 |
2017-02-21 |
34 |
0.5081467 |
796859.8 |
2175611 |
1 |
| 370 |
PI191 |
Nixon |
2709 |
2017-02-23 |
45 |
0.5127451 |
799443.1 |
2179821 |
2 |
| 371 |
PI184 |
Nixon |
2709 |
2017-03-03 |
16 |
8.1651502 |
799305.2 |
2180206 |
2 |

Aggregation of top six(6) number of hectares per block
| 15 |
15 |
97.47553 |
| 10 |
10 |
91.45048 |
| 11 |
11 |
70.27694 |
| 8 |
8 |
68.93399 |
| 14 |
14 |
66.39683 |
| 2 |
2 |
47.19502 |
The table above illustrate the number of hectares per top six (6) blocks, It summarizes the number of hectares per block of irrigation.

C.4 Thematic map
At this step, we visualize characteristic of parcels by specific theme accross the landscape. Thematic maps are designed to convey information about a single topic or theme, such as
land tenure,
priority constraint, etc.. A thematic map communicates more information than graphs illustrated above. For example, individual parcel locations can be showed over the stream network .
Show R code
# plotting parcels area in Grant 1
library(sp);library(lattice);library(grid)
trellis.par.set(add.line = list(col = "transparent"))
scale = list("SpatialPolygonsRescale", layout.scale.bar(),
offset = c(798000,2173900), scale = 1000, fill=c("transparent","black"), which=1)
text1 = list("sp.text", c(798000,2173800), "0",which=1, cex = .7)
text2 = list("sp.text", c(799000,2173800), "1000 m",which=1, cex = .7)
arrow = list("SpatialPolygonsRescale", layout.north.arrow(type=1),
offset = c(798500,2174000), scale = 700, which=1)
rd = list("sp.lines", road_utm, col='gray')
str = list("sp.lines", stream_utm, col='blue')
# plotting with scale bar, north arrow, and Title
spplot(subset(targetlayer, block == 15), c("statut_fonc"), sp.layout = list(scale, text1, text2, arrow, rd, str),
scales = list(draw = TRUE), main =
"Land tenure of farmers at block 15", ylab = "Northing (m)", xlab = "Easting (m)")

