Correlation vs Causation

Mai AlSwayan

January 2017

Figures

Example1

http://tylervigen.com/spurious-correlations

Example 2

\[ x_t=x_{t-1}+\epsilon_{x,t} \] \[ y_t=y_{t-1}+\epsilon_{y,t} \] where \[ \epsilon_{x,t}~N(0,\sigma^2_x) \] \[ \epsilon_{y,t}~N(0,\sigma^2_y) \] , following two independent random walks, \(\{x_t\}\) and \(\{y_t\}\) are thus unrelated.

Example 2

library(zoo)

set.seed(42)
n <- 500
x <- as.ts( cumsum( rnorm(n, mean=0, sd=1) ) )
y <- as.ts( cumsum( rnorm(n, mean=0, sd=1) ) )

Example 2

\[ XX=\rho_{x,y} \]

Example 2