library(maptools)
## Warning: package 'maptools' was built under R version 3.3.3
## Loading required package: sp
## Checking rgeos availability: TRUE
library(maps)
library(mapdata)
## Warning: package 'mapdata' was built under R version 3.3.3
library(dismo)
## Loading required package: raster
library(raster)
pachy <- read.csv("Herbario.csv")
predStackModern <- getData("worldclim", var="bio", res=2.5, path="data/")
# set the coordinate reference system for WGS84
projection(predStackModern) <- CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0')
# Crop database for region Neotropic
region = extent(-90,-30,-40,15) # define the extent neotropic
predStackModern_NEO = crop(predStackModern, region)
# Plot data climat
plot(predStackModern_NEO)
dir.create('Output_modern_Maxent_NEO', recursive=TRUE) # creates new directory
dir.create('Output_modern_Maxent_WORLD', recursive=TRUE)
modelBasic_NEO <- maxent(
x=predStackModern_NEO,
p=pachy[ , c('Long', 'Lat')],
path=paste(getwd(), '/Output_modern_Maxent_NEO', sep=''),
args=c(
'randomtestpoints=30',
'betamultiplier=1',
'linear=true',
'quadratic=true',
'product=true',
'threshold=true',
'hinge=true',
'threads=2',
'responsecurves=true',
'jackknife=true',
'askoverwrite=false'
)
)
It will open HTML page in your browser (Firefox, Safari…)
modelBasic_NEO
## class : MaxEnt
## variables: bio1 bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19
Note that unlike running Maxent from the program the prediction raster is not automatically created, so we have to do that in the next step
Note that you could save the prediction raster in any number of formats (see ?writeFormats), but GeoTiffs are small and can be read by ArcMap… ASCIIs can also be read by other programs but are large… the default raster format (GRD) sometimes can’t be read by ArcMap…if you don’t specifiy a file name then the results are written to R’s memory
mapModernBasic_NEO <- predict(
object=modelBasic_NEO,
x=predStackModern_NEO,
filename=paste(getwd(), '/Output_modern_Maxent_NEO/pachy_map_modern_neo', sep=''),
na.rm=TRUE,
format='GTiff',
overwrite=TRUE,
progress='text'
)
##
|
| | 0%
|
|================ | 25%
|
|================================ | 50%
|
|================================================= | 75%
|
|=================================================================| 100%
##
Look at map
plot(mapModernBasic_NEO, main='Modern')
#Add species' records
points(pachy[ , c('Long', 'Lat')], cex=0.3)
#MaxEnt
modelBasic <- maxent(
x=predStackModern,
p=pachy[ , c('Long', 'Lat')],
path=paste(getwd(), '/Output_modern_Maxent_WORLD', sep=''),
args=c(
'randomtestpoints=30',
'betamultiplier=1',
'linear=true',
'quadratic=true',
'product=true',
'threshold=true',
'hinge=true',
'threads=2',
'responsecurves=true',
'jackknife=true',
'askoverwrite=false'
)
)
# prediction
mapModernBasic <- predict(
object=modelBasic,
x=predStackModern,
filename=paste(getwd(), '/Output_modern_Maxent_WORLD/pachy_map_modern', sep=''),
na.rm=TRUE,
format='GTiff',
overwrite=TRUE,
progress='text'
)
##
|
| | 0%
|
|= | 2%
|
|== | 3%
|
|=== | 5%
|
|==== | 6%
|
|===== | 8%
|
|====== | 9%
|
|======= | 11%
|
|======== | 12%
|
|========= | 14%
|
|========== | 15%
|
|=========== | 17%
|
|============ | 18%
|
|============= | 20%
|
|============== | 21%
|
|=============== | 23%
|
|================ | 24%
|
|================= | 26%
|
|================== | 27%
|
|=================== | 29%
|
|==================== | 30%
|
|===================== | 32%
|
|====================== | 33%
|
|======================= | 35%
|
|======================== | 36%
|
|========================= | 38%
|
|========================== | 39%
|
|=========================== | 41%
|
|============================ | 42%
|
|============================= | 44%
|
|============================== | 45%
|
|=============================== | 47%
|
|================================ | 48%
|
|================================ | 50%
|
|================================= | 52%
|
|================================== | 53%
|
|=================================== | 55%
|
|==================================== | 56%
|
|===================================== | 58%
|
|====================================== | 59%
|
|======================================= | 61%
|
|======================================== | 62%
|
|========================================= | 64%
|
|========================================== | 65%
|
|=========================================== | 67%
|
|============================================ | 68%
|
|============================================= | 70%
|
|============================================== | 71%
|
|=============================================== | 73%
|
|================================================ | 74%
|
|================================================= | 76%
|
|================================================== | 77%
|
|=================================================== | 79%
|
|==================================================== | 80%
|
|===================================================== | 82%
|
|====================================================== | 83%
|
|======================================================= | 85%
|
|======================================================== | 86%
|
|========================================================= | 88%
|
|========================================================== | 89%
|
|=========================================================== | 91%
|
|============================================================ | 92%
|
|============================================================= | 94%
|
|============================================================== | 95%
|
|=============================================================== | 97%
|
|================================================================ | 98%
|
|=================================================================| 100%
##
#Plot records
plot(mapModernBasic, main='Modern')
#Add species' records
points(pachy[ , c('Long', 'Lat')], cex=0.3)