## 分别做9个组内部80个因子之间的关联不是9个大组之间的关联应该就是把数据表分成9个子表,
## 然后用子表各做一个80个因子的关联



## 加载包
library(readxl)
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
## VIM is ready to use. 
##  Since version 4.0.0 the GUI is in its own package VIMGUI.
## 
##           Please use the package to use the new (and old) GUI.
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.2
library(ca)
library(dplyr)
## -------------------------------------------------------------------------
## data.table + dplyr code now lives in dtplyr.
## Please library(dtplyr)!
## -------------------------------------------------------------------------
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
## 
##     between, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(arules)
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
library(arulesViz)

theme_set(theme_bw(base_family = "STKaiti"))

## 读取数据
ansdata <- read_excel("Array_data_nobackground_normalised.xlsx")
summary(ansdata)
##     Factor          Factor_group         Array data      
##  Length:6400        Length:6400        Min.   :    0.76  
##  Class :character   Class :character   1st Qu.:   80.23  
##  Mode  :character   Mode  :character   Median :  143.06  
##                                        Mean   : 1487.96  
##                                        3rd Qu.:  316.36  
##                                        Max.   :59801.26  
##                                                          
##   Patient Id        Collection_Date     Illness_Day      Outcome         
##  Length:6400        Length:6400        Min.   : 3.00   Length:6400       
##  Class :character   Class :character   1st Qu.:11.00   Class :character  
##  Mode  :character   Mode  :character   Median :15.00   Mode  :character  
##                                        Mean   :17.89                     
##                                        3rd Qu.:23.00                     
##                                        Max.   :68.00                     
##                                        NA's   :400                       
##       Age            Sex            Disease Phase Sampling Categry  
##  Min.   : 6.00   Length:6400        Min.   :1.0   Length:6400       
##  1st Qu.:41.00   Class :character   1st Qu.:2.0   Class :character  
##  Median :55.00   Mode  :character   Median :2.0   Mode  :character  
##  Mean   :53.67                      Mean   :2.2                     
##  3rd Qu.:67.00                      3rd Qu.:3.0                     
##  Max.   :82.00                      Max.   :4.0                     
##  NA's   :400                        NA's   :400
## 处理缺失值
sum(is.na(ansdata))
## [1] 2480
par(cex = 0.8)
# VIM::aggr(ansdata)

colnames(ansdata) <- c("factor","factorgroup","arraydata","paintID",
                       "collectiondate","illnessday","outcom","age","sex",
                       "diseaPH","SampleCategry")
summary(ansdata)
##     factor          factorgroup          arraydata       
##  Length:6400        Length:6400        Min.   :    0.76  
##  Class :character   Class :character   1st Qu.:   80.23  
##  Mode  :character   Mode  :character   Median :  143.06  
##                                        Mean   : 1487.96  
##                                        3rd Qu.:  316.36  
##                                        Max.   :59801.26  
##                                                          
##    paintID          collectiondate       illnessday       outcom         
##  Length:6400        Length:6400        Min.   : 3.00   Length:6400       
##  Class :character   Class :character   1st Qu.:11.00   Class :character  
##  Mode  :character   Mode  :character   Median :15.00   Mode  :character  
##                                        Mean   :17.89                     
##                                        3rd Qu.:23.00                     
##                                        Max.   :68.00                     
##                                        NA's   :400                       
##       age            sex               diseaPH    SampleCategry     
##  Min.   : 6.00   Length:6400        Min.   :1.0   Length:6400       
##  1st Qu.:41.00   Class :character   1st Qu.:2.0   Class :character  
##  Median :55.00   Mode  :character   Median :2.0   Mode  :character  
##  Mean   :53.67                      Mean   :2.2                     
##  3rd Qu.:67.00                      3rd Qu.:3.0                     
##  Max.   :82.00                      Max.   :4.0                     
##  NA's   :400                        NA's   :400
usedata <- ansdata[c("factor","factorgroup","illnessday","outcom","age","sex",
                     "diseaPH","SampleCategry")]

summary(usedata)
##     factor          factorgroup          illnessday       outcom         
##  Length:6400        Length:6400        Min.   : 3.00   Length:6400       
##  Class :character   Class :character   1st Qu.:11.00   Class :character  
##  Mode  :character   Mode  :character   Median :15.00   Mode  :character  
##                                        Mean   :17.89                     
##                                        3rd Qu.:23.00                     
##                                        Max.   :68.00                     
##                                        NA's   :400                       
##       age            sex               diseaPH    SampleCategry     
##  Min.   : 6.00   Length:6400        Min.   :1.0   Length:6400       
##  1st Qu.:41.00   Class :character   1st Qu.:2.0   Class :character  
##  Median :55.00   Mode  :character   Median :2.0   Mode  :character  
##  Mean   :53.67                      Mean   :2.2                     
##  3rd Qu.:67.00                      3rd Qu.:3.0                     
##  Max.   :82.00                      Max.   :4.0                     
##  NA's   :400                        NA's   :400
VIM::aggr(usedata)

## 对数据进行分析

# ## 剔除带有缺失值的行
# usedata <- na.omit(usedata)
# VIM::aggr(usedata)

## 整理数据
usedata <- usedata%>%
  group_by(factor,factorgroup,sex,outcom)

table(usedata$outcom)
## 
##   Fatal Healthy    Mild  Severe 
##    1600     400    1040    3360
table(usedata$SampleCategry)
## 
## All other     First      Last 
##      2720      2320      1360
table(paste(usedata$outcom,usedata$SampleCategry,sep = "-"))
## 
##  Fatal-All other      Fatal-First       Fatal-Last    Healthy-First 
##              640              480              480              400 
##   Mild-All other       Mild-First Severe-All other     Severe-First 
##              480              560             1600              880 
##      Severe-Last 
##              880
## 生成新的数据列
usedata$outSC <- paste(usedata$outcom,usedata$SampleCategry,sep = "-")
table(usedata$outSC)
## 
##  Fatal-All other      Fatal-First       Fatal-Last    Healthy-First 
##              640              480              480              400 
##   Mild-All other       Mild-First Severe-All other     Severe-First 
##              480              560             1600              880 
##      Severe-Last 
##              880
osc_group <- unique(usedata$outSC)
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guanliandata <- usedata[c("factor","factorgroup","illnessday","age","sex",
                          "diseaPH","outSC")]

## 对年龄数据和存活天数数据分组
guanliandata$age <- cut_width(guanliandata$age,10)
summary(guanliandata$illnessday)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    3.00   11.00   15.00   17.89   23.00   68.00     400
guanliandata$illnessday <- cut_width(guanliandata$illnessday,10)
## 转换数据类型
guanliandata <- data.frame(apply(guanliandata,2,as.factor))
summary(guanliandata)
##      factor           factorgroup     illnessday        age      
##  ANG    :  80   白介素      :1120   (5,15] :3040   (75,85]:1360  
##  BDNF   :  80   干扰素      :  80   (15,25]:1440   (35,45]:1280  
##  BLC    :  80   集落刺激因子: 240   (25,35]: 720   (55,65]:1120  
##  CCL11  :  80   趋化因子    :2080   (35,45]: 320   (45,55]:1040  
##  CCL24  :  80   生长因子    :2080   [-5,5] : 320   (25,35]: 640  
##  CCL26  :  80   肿瘤坏死因子: 320   (Other): 160   (Other): 560  
##  (Other):5920   NA's        : 480   NA's   : 400   NA's   : 400  
##    sex       diseaPH                  outSC     
##  F   :1600    1  :1440   Severe-All other:1600  
##  M   :4400    2  :2800   Severe-First    : 880  
##  NA's: 400    3  : 880   Severe-Last     : 880  
##               4  : 880   Fatal-All other : 640  
##              NA's: 400   Mild-First      : 560  
##                          Fatal-First     : 480  
##                          (Other)         :1360
## 针对 Fatal-All other 数据的关联分析
falor <- guanliandata[guanliandata$outSC == "Fatal-All other",]
str(falor)
## 'data.frame':    640 obs. of  7 variables:
##  $ factor     : Factor w/ 80 levels "ANG","BDNF","BLC",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ factorgroup: Factor w/ 6 levels "白介素","干扰素",..: 5 5 4 4 4 4 4 3 3 3 ...
##  $ illnessday : Factor w/ 7 levels "(15,25]","(25,35]",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ age        : Factor w/ 8 levels "(15,25]","(25,35]",..: 6 6 6 6 6 6 6 6 6 6 ...
##  $ sex        : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
##  $ diseaPH    : Factor w/ 4 levels " 1"," 2"," 3",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ outSC      : Factor w/ 9 levels "Fatal-All other",..: 1 1 1 1 1 1 1 1 1 1 ...
falorrd <- as(falor,"transactions")
## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(falorrd,topN = 30,main = "Fatal-All other数据频繁的项")

## 挖掘关联规则
guize <- apriori(falorrd,parameter = list(supp = 0.3, ##支持度
                                            conf = 0.3, ## 置信度
                                            minlen = 3),
                 appearance = list(rhs = c("outSC=Fatal-All other"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 192 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[101 item(s), 640 transaction(s)] done [0.00s].
## sorting and recoding items ... [9 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [6 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 6 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 4 
## 5 1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.167   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3750   Min.   :1    Min.   :1  
##  1st Qu.:0.3750   1st Qu.:1    1st Qu.:1  
##  Median :0.3750   Median :1    Median :1  
##  Mean   :0.3958   Mean   :1    Mean   :1  
##  3rd Qu.:0.3750   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.5000   Max.   :1    Max.   :1  
## 
## mining info:
##     data ntransactions support confidence
##  falorrd           640     0.3        0.3
inspect(guize)
##     lhs                     rhs                     support confidence lift
## [1] {illnessday=(15,25],                                                   
##      sex=F}              => {outSC=Fatal-All other}   0.375          1    1
## [2] {sex=F,                                                                
##      diseaPH= 3}         => {outSC=Fatal-All other}   0.375          1    1
## [3] {illnessday=(5,15],                                                    
##      sex=M}              => {outSC=Fatal-All other}   0.500          1    1
## [4] {illnessday=(5,15],                                                    
##      diseaPH= 2}         => {outSC=Fatal-All other}   0.375          1    1
## [5] {sex=M,                                                                
##      diseaPH= 2}         => {outSC=Fatal-All other}   0.375          1    1
## [6] {illnessday=(5,15],                                                    
##      sex=M,                                                                
##      diseaPH= 2}         => {outSC=Fatal-All other}   0.375          1    1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(falorrd,parameter = list(supp = 0.3, ##支持度
                                          conf = 0.3, ## 置信度
                                          minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 192 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[101 item(s), 640 transaction(s)] done [0.00s].
## sorting and recoding items ... [9 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [22 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 22 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 18  4 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.182   3.000   4.000 
## 
## summary of quality measures:
##     support        confidence          lift      
##  Min.   :0.375   Min.   :0.7500   Min.   :1.000  
##  1st Qu.:0.375   1st Qu.:0.7500   1st Qu.:1.125  
##  Median :0.375   Median :1.0000   Median :1.500  
##  Mean   :0.392   Mean   :0.9091   Mean   :1.591  
##  3rd Qu.:0.375   3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :0.500   Max.   :1.0000   Max.   :2.000  
## 
## mining info:
##     data ntransactions support confidence
##  falorrd           640     0.3        0.3
inspect(guize)
##      lhs                        rhs                     support confidence lift
## [1]  {sex=F,                                                                   
##       diseaPH= 3}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [2]  {diseaPH= 3,                                                              
##       outSC=Fatal-All other} => {sex=F}                   0.375       1.00  2.0
## [3]  {sex=F,                                                                   
##       outSC=Fatal-All other} => {diseaPH= 3}              0.375       0.75  2.0
## [4]  {illnessday=(15,25],                                                      
##       sex=F}                 => {outSC=Fatal-All other}   0.375       1.00  1.0
## [5]  {illnessday=(15,25],                                                      
##       outSC=Fatal-All other} => {sex=F}                   0.375       1.00  2.0
## [6]  {sex=F,                                                                   
##       outSC=Fatal-All other} => {illnessday=(15,25]}      0.375       0.75  2.0
## [7]  {illnessday=(5,15],                                                       
##       sex=M}                 => {diseaPH= 2}              0.375       0.75  1.5
## [8]  {illnessday=(5,15],                                                       
##       diseaPH= 2}            => {sex=M}                   0.375       1.00  2.0
## [9]  {sex=M,                                                                   
##       diseaPH= 2}            => {illnessday=(5,15]}       0.375       1.00  2.0
## [10] {illnessday=(5,15],                                                       
##       sex=M}                 => {outSC=Fatal-All other}   0.500       1.00  1.0
## [11] {illnessday=(5,15],                                                       
##       outSC=Fatal-All other} => {sex=M}                   0.500       1.00  2.0
## [12] {sex=M,                                                                   
##       outSC=Fatal-All other} => {illnessday=(5,15]}       0.500       1.00  2.0
## [13] {illnessday=(5,15],                                                       
##       diseaPH= 2}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [14] {illnessday=(5,15],                                                       
##       outSC=Fatal-All other} => {diseaPH= 2}              0.375       0.75  1.5
## [15] {diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {illnessday=(5,15]}       0.375       0.75  1.5
## [16] {sex=M,                                                                   
##       diseaPH= 2}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [17] {sex=M,                                                                   
##       outSC=Fatal-All other} => {diseaPH= 2}              0.375       0.75  1.5
## [18] {diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {sex=M}                   0.375       0.75  1.5
## [19] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 2}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [20] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       outSC=Fatal-All other} => {diseaPH= 2}              0.375       0.75  1.5
## [21] {illnessday=(5,15],                                                       
##       diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {sex=M}                   0.375       1.00  2.0
## [22] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {illnessday=(5,15]}       0.375       1.00  2.0
inspect(sort(guize,by = "lift"))
##      lhs                        rhs                     support confidence lift
## [1]  {diseaPH= 3,                                                              
##       outSC=Fatal-All other} => {sex=F}                   0.375       1.00  2.0
## [2]  {sex=F,                                                                   
##       outSC=Fatal-All other} => {diseaPH= 3}              0.375       0.75  2.0
## [3]  {illnessday=(15,25],                                                      
##       outSC=Fatal-All other} => {sex=F}                   0.375       1.00  2.0
## [4]  {sex=F,                                                                   
##       outSC=Fatal-All other} => {illnessday=(15,25]}      0.375       0.75  2.0
## [5]  {illnessday=(5,15],                                                       
##       diseaPH= 2}            => {sex=M}                   0.375       1.00  2.0
## [6]  {sex=M,                                                                   
##       diseaPH= 2}            => {illnessday=(5,15]}       0.375       1.00  2.0
## [7]  {illnessday=(5,15],                                                       
##       outSC=Fatal-All other} => {sex=M}                   0.500       1.00  2.0
## [8]  {sex=M,                                                                   
##       outSC=Fatal-All other} => {illnessday=(5,15]}       0.500       1.00  2.0
## [9]  {illnessday=(5,15],                                                       
##       diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {sex=M}                   0.375       1.00  2.0
## [10] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {illnessday=(5,15]}       0.375       1.00  2.0
## [11] {illnessday=(5,15],                                                       
##       sex=M}                 => {diseaPH= 2}              0.375       0.75  1.5
## [12] {illnessday=(5,15],                                                       
##       outSC=Fatal-All other} => {diseaPH= 2}              0.375       0.75  1.5
## [13] {diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {illnessday=(5,15]}       0.375       0.75  1.5
## [14] {sex=M,                                                                   
##       outSC=Fatal-All other} => {diseaPH= 2}              0.375       0.75  1.5
## [15] {diseaPH= 2,                                                              
##       outSC=Fatal-All other} => {sex=M}                   0.375       0.75  1.5
## [16] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       outSC=Fatal-All other} => {diseaPH= 2}              0.375       0.75  1.5
## [17] {sex=F,                                                                   
##       diseaPH= 3}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [18] {illnessday=(15,25],                                                      
##       sex=F}                 => {outSC=Fatal-All other}   0.375       1.00  1.0
## [19] {illnessday=(5,15],                                                       
##       sex=M}                 => {outSC=Fatal-All other}   0.500       1.00  1.0
## [20] {illnessday=(5,15],                                                       
##       diseaPH= 2}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [21] {sex=M,                                                                   
##       diseaPH= 2}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## [22] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 2}            => {outSC=Fatal-All other}   0.375       1.00  1.0
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则

plot(guize,method = "graph")

## 针对 Fatal-First  数据的关联分析
guizdata <- guanliandata[guanliandata$outSC == "Fatal-First",]
guizdata <- as(guizdata,"transactions")
## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Fatal-First数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                          conf = 0.3, ## 置信度
                                          minlen = 3),
                 appearance = list(rhs = c("outSC=Fatal-First"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 144 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[98 item(s), 480 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [10 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 10 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 4 
## 8 2 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     3.0     3.0     3.0     3.2     3.0     4.0 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3250   Min.   :1    Min.   :1  
##  1st Qu.:0.3333   1st Qu.:1    1st Qu.:1  
##  Median :0.4167   Median :1    Median :1  
##  Mean   :0.4317   Mean   :1    Mean   :1  
##  3rd Qu.:0.5000   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.6667   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           480     0.3        0.3
inspect(guize)
##      lhs                       rhs                   support confidence lift
## [1]  {factorgroup=生长因子,                                                 
##       illnessday=(5,15]}    => {outSC=Fatal-First} 0.3250000          1    1
## [2]  {factorgroup=趋化因子,                                                 
##       illnessday=(5,15]}    => {outSC=Fatal-First} 0.3250000          1    1
## [3]  {sex=F,                                                                
##       diseaPH= 2}           => {outSC=Fatal-First} 0.3333333          1    1
## [4]  {illnessday=(5,15],                                                    
##       diseaPH= 2}           => {outSC=Fatal-First} 0.3333333          1    1
## [5]  {illnessday=(5,15],                                                    
##       sex=F}                => {outSC=Fatal-First} 0.5000000          1    1
## [6]  {sex=M,                                                                
##       diseaPH= 1}           => {outSC=Fatal-First} 0.5000000          1    1
## [7]  {illnessday=(5,15],                                                    
##       sex=M}                => {outSC=Fatal-First} 0.5000000          1    1
## [8]  {illnessday=(5,15],                                                    
##       diseaPH= 1}           => {outSC=Fatal-First} 0.6666667          1    1
## [9]  {illnessday=(5,15],                                                    
##       sex=F,                                                                
##       diseaPH= 2}           => {outSC=Fatal-First} 0.3333333          1    1
## [10] {illnessday=(5,15],                                                    
##       sex=M,                                                                
##       diseaPH= 1}           => {outSC=Fatal-First} 0.5000000          1    1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                          conf = 0.3, ## 置信度
                                          minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 144 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[98 item(s), 480 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [38 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 38 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 30  8 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.211   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence          lift      
##  Min.   :0.3250   Min.   :0.3250   Min.   :1.000  
##  1st Qu.:0.3333   1st Qu.:0.7500   1st Qu.:1.000  
##  Median :0.4167   Median :1.0000   Median :1.000  
##  Mean   :0.4285   Mean   :0.8658   Mean   :1.237  
##  3rd Qu.:0.5000   3rd Qu.:1.0000   3rd Qu.:1.500  
##  Max.   :0.6667   Max.   :1.0000   Max.   :2.000  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           480     0.3        0.3
inspect(guize)
##      lhs                       rhs                      support confidence lift
## [1]  {factorgroup=生长因子,                                                    
##       illnessday=(5,15]}    => {outSC=Fatal-First}    0.3250000  1.0000000  1.0
## [2]  {factorgroup=生长因子,                                                    
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3250000  1.0000000  1.0
## [3]  {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {factorgroup=生长因子} 0.3250000  0.3250000  1.0
## [4]  {factorgroup=趋化因子,                                                    
##       illnessday=(5,15]}    => {outSC=Fatal-First}    0.3250000  1.0000000  1.0
## [5]  {factorgroup=趋化因子,                                                    
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3250000  1.0000000  1.0
## [6]  {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {factorgroup=趋化因子} 0.3250000  0.3250000  1.0
## [7]  {sex=F,                                                                   
##       diseaPH= 2}           => {illnessday=(5,15]}    0.3333333  1.0000000  1.0
## [8]  {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {sex=F}                0.3333333  1.0000000  2.0
## [9]  {illnessday=(5,15],                                                       
##       sex=F}                => {diseaPH= 2}           0.3333333  0.6666667  2.0
## [10] {sex=F,                                                                   
##       diseaPH= 2}           => {outSC=Fatal-First}    0.3333333  1.0000000  1.0
## [11] {diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {sex=F}                0.3333333  1.0000000  2.0
## [12] {sex=F,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 2}           0.3333333  0.6666667  2.0
## [13] {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {outSC=Fatal-First}    0.3333333  1.0000000  1.0
## [14] {diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3333333  1.0000000  1.0
## [15] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {diseaPH= 2}           0.3333333  0.3333333  1.0
## [16] {sex=M,                                                                   
##       diseaPH= 1}           => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [17] {illnessday=(5,15],                                                       
##       sex=M}                => {diseaPH= 1}           0.5000000  1.0000000  1.5
## [18] {illnessday=(5,15],                                                       
##       diseaPH= 1}           => {sex=M}                0.5000000  0.7500000  1.5
## [19] {sex=M,                                                                   
##       diseaPH= 1}           => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [20] {sex=M,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 1}           0.5000000  1.0000000  1.5
## [21] {diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {sex=M}                0.5000000  0.7500000  1.5
## [22] {illnessday=(5,15],                                                       
##       sex=M}                => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [23] {sex=M,                                                                   
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [24] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {sex=M}                0.5000000  0.5000000  1.0
## [25] {illnessday=(5,15],                                                       
##       sex=F}                => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [26] {sex=F,                                                                   
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [27] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {sex=F}                0.5000000  0.5000000  1.0
## [28] {illnessday=(5,15],                                                       
##       diseaPH= 1}           => {outSC=Fatal-First}    0.6666667  1.0000000  1.0
## [29] {diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.6666667  1.0000000  1.0
## [30] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {diseaPH= 1}           0.6666667  0.6666667  1.0
## [31] {illnessday=(5,15],                                                       
##       sex=F,                                                                   
##       diseaPH= 2}           => {outSC=Fatal-First}    0.3333333  1.0000000  1.0
## [32] {sex=F,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3333333  1.0000000  1.0
## [33] {illnessday=(5,15],                                                       
##       diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {sex=F}                0.3333333  1.0000000  2.0
## [34] {illnessday=(5,15],                                                       
##       sex=F,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 2}           0.3333333  0.6666667  2.0
## [35] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 1}           => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [36] {sex=M,                                                                   
##       diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [37] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 1}           0.5000000  1.0000000  1.5
## [38] {illnessday=(5,15],                                                       
##       diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {sex=M}                0.5000000  0.7500000  1.5
inspect(sort(guize,by = "lift"))
##      lhs                       rhs                      support confidence lift
## [1]  {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {sex=F}                0.3333333  1.0000000  2.0
## [2]  {illnessday=(5,15],                                                       
##       sex=F}                => {diseaPH= 2}           0.3333333  0.6666667  2.0
## [3]  {diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {sex=F}                0.3333333  1.0000000  2.0
## [4]  {sex=F,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 2}           0.3333333  0.6666667  2.0
## [5]  {illnessday=(5,15],                                                       
##       diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {sex=F}                0.3333333  1.0000000  2.0
## [6]  {illnessday=(5,15],                                                       
##       sex=F,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 2}           0.3333333  0.6666667  2.0
## [7]  {illnessday=(5,15],                                                       
##       sex=M}                => {diseaPH= 1}           0.5000000  1.0000000  1.5
## [8]  {illnessday=(5,15],                                                       
##       diseaPH= 1}           => {sex=M}                0.5000000  0.7500000  1.5
## [9]  {sex=M,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 1}           0.5000000  1.0000000  1.5
## [10] {diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {sex=M}                0.5000000  0.7500000  1.5
## [11] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       outSC=Fatal-First}    => {diseaPH= 1}           0.5000000  1.0000000  1.5
## [12] {illnessday=(5,15],                                                       
##       diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {sex=M}                0.5000000  0.7500000  1.5
## [13] {factorgroup=生长因子,                                                    
##       illnessday=(5,15]}    => {outSC=Fatal-First}    0.3250000  1.0000000  1.0
## [14] {factorgroup=生长因子,                                                    
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3250000  1.0000000  1.0
## [15] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {factorgroup=生长因子} 0.3250000  0.3250000  1.0
## [16] {factorgroup=趋化因子,                                                    
##       illnessday=(5,15]}    => {outSC=Fatal-First}    0.3250000  1.0000000  1.0
## [17] {factorgroup=趋化因子,                                                    
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3250000  1.0000000  1.0
## [18] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {factorgroup=趋化因子} 0.3250000  0.3250000  1.0
## [19] {sex=F,                                                                   
##       diseaPH= 2}           => {illnessday=(5,15]}    0.3333333  1.0000000  1.0
## [20] {sex=F,                                                                   
##       diseaPH= 2}           => {outSC=Fatal-First}    0.3333333  1.0000000  1.0
## [21] {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {outSC=Fatal-First}    0.3333333  1.0000000  1.0
## [22] {diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3333333  1.0000000  1.0
## [23] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {diseaPH= 2}           0.3333333  0.3333333  1.0
## [24] {sex=M,                                                                   
##       diseaPH= 1}           => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [25] {sex=M,                                                                   
##       diseaPH= 1}           => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [26] {illnessday=(5,15],                                                       
##       sex=M}                => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [27] {sex=M,                                                                   
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [28] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {sex=M}                0.5000000  0.5000000  1.0
## [29] {illnessday=(5,15],                                                       
##       sex=F}                => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [30] {sex=F,                                                                   
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## [31] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {sex=F}                0.5000000  0.5000000  1.0
## [32] {illnessday=(5,15],                                                       
##       diseaPH= 1}           => {outSC=Fatal-First}    0.6666667  1.0000000  1.0
## [33] {diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.6666667  1.0000000  1.0
## [34] {illnessday=(5,15],                                                       
##       outSC=Fatal-First}    => {diseaPH= 1}           0.6666667  0.6666667  1.0
## [35] {illnessday=(5,15],                                                       
##       sex=F,                                                                   
##       diseaPH= 2}           => {outSC=Fatal-First}    0.3333333  1.0000000  1.0
## [36] {sex=F,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.3333333  1.0000000  1.0
## [37] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 1}           => {outSC=Fatal-First}    0.5000000  1.0000000  1.0
## [38] {sex=M,                                                                   
##       diseaPH= 1,                                                              
##       outSC=Fatal-First}    => {illnessday=(5,15]}    0.5000000  1.0000000  1.0
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Fatal-Last"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Fatal-Last",]
guizdata <- as(guizdata,"transactions")
## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Fatal-Last数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3),
                 appearance = list(rhs = c("outSC=Fatal-Last"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 144 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[101 item(s), 480 transaction(s)] done [0.00s].
## sorting and recoding items ... [10 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [6 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 6 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 4 
## 5 1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.167   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3333   Min.   :1    Min.   :1  
##  1st Qu.:0.3333   1st Qu.:1    1st Qu.:1  
##  Median :0.3333   Median :1    Median :1  
##  Mean   :0.3611   Mean   :1    Mean   :1  
##  3rd Qu.:0.3333   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.5000   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           480     0.3        0.3
inspect(guize)
##     lhs                     rhs                  support confidence lift
## [1] {illnessday=(15,25],                                                
##      diseaPH= 2}         => {outSC=Fatal-Last} 0.3333333          1    1
## [2] {sex=M,                                                             
##      diseaPH= 2}         => {outSC=Fatal-Last} 0.3333333          1    1
## [3] {sex=F,                                                             
##      diseaPH= 4}         => {outSC=Fatal-Last} 0.3333333          1    1
## [4] {illnessday=(35,45],                                                
##      sex=F}              => {outSC=Fatal-Last} 0.3333333          1    1
## [5] {illnessday=(15,25],                                                
##      sex=M}              => {outSC=Fatal-Last} 0.5000000          1    1
## [6] {illnessday=(15,25],                                                
##      sex=M,                                                             
##      diseaPH= 2}         => {outSC=Fatal-Last} 0.3333333          1    1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 144 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[101 item(s), 480 transaction(s)] done [0.00s].
## sorting and recoding items ... [10 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [22 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 22 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 18  4 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.182   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence          lift      
##  Min.   :0.3333   Min.   :0.6667   Min.   :1.000  
##  1st Qu.:0.3333   1st Qu.:0.7500   1st Qu.:1.250  
##  Median :0.3333   Median :1.0000   Median :2.000  
##  Mean   :0.3561   Mean   :0.9091   Mean   :1.727  
##  3rd Qu.:0.3333   3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :0.5000   Max.   :1.0000   Max.   :2.000  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           480     0.3        0.3
inspect(guize)
##      lhs                     rhs                    support confidence lift
## [1]  {illnessday=(15,25],                                                  
##       diseaPH= 2}         => {sex=M}              0.3333333  1.0000000    2
## [2]  {sex=M,                                                               
##       diseaPH= 2}         => {illnessday=(15,25]} 0.3333333  1.0000000    2
## [3]  {illnessday=(15,25],                                                  
##       sex=M}              => {diseaPH= 2}         0.3333333  0.6666667    2
## [4]  {illnessday=(15,25],                                                  
##       diseaPH= 2}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [5]  {diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {illnessday=(15,25]} 0.3333333  1.0000000    2
## [6]  {illnessday=(15,25],                                                  
##       outSC=Fatal-Last}   => {diseaPH= 2}         0.3333333  0.6666667    2
## [7]  {sex=M,                                                               
##       diseaPH= 2}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [8]  {diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {sex=M}              0.3333333  1.0000000    2
## [9]  {sex=M,                                                               
##       outSC=Fatal-Last}   => {diseaPH= 2}         0.3333333  0.6666667    2
## [10] {illnessday=(35,45],                                                  
##       sex=F}              => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [11] {illnessday=(35,45],                                                  
##       outSC=Fatal-Last}   => {sex=F}              0.3333333  1.0000000    2
## [12] {sex=F,                                                               
##       outSC=Fatal-Last}   => {illnessday=(35,45]} 0.3333333  0.6666667    2
## [13] {sex=F,                                                               
##       diseaPH= 4}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [14] {diseaPH= 4,                                                          
##       outSC=Fatal-Last}   => {sex=F}              0.3333333  1.0000000    2
## [15] {sex=F,                                                               
##       outSC=Fatal-Last}   => {diseaPH= 4}         0.3333333  0.6666667    2
## [16] {illnessday=(15,25],                                                  
##       sex=M}              => {outSC=Fatal-Last}   0.5000000  1.0000000    1
## [17] {illnessday=(15,25],                                                  
##       outSC=Fatal-Last}   => {sex=M}              0.5000000  1.0000000    2
## [18] {sex=M,                                                               
##       outSC=Fatal-Last}   => {illnessday=(15,25]} 0.5000000  1.0000000    2
## [19] {illnessday=(15,25],                                                  
##       sex=M,                                                               
##       diseaPH= 2}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [20] {illnessday=(15,25],                                                  
##       diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {sex=M}              0.3333333  1.0000000    2
## [21] {sex=M,                                                               
##       diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {illnessday=(15,25]} 0.3333333  1.0000000    2
## [22] {illnessday=(15,25],                                                  
##       sex=M,                                                               
##       outSC=Fatal-Last}   => {diseaPH= 2}         0.3333333  0.6666667    2
inspect(sort(guize,by = "lift"))
##      lhs                     rhs                    support confidence lift
## [1]  {illnessday=(15,25],                                                  
##       diseaPH= 2}         => {sex=M}              0.3333333  1.0000000    2
## [2]  {sex=M,                                                               
##       diseaPH= 2}         => {illnessday=(15,25]} 0.3333333  1.0000000    2
## [3]  {illnessday=(15,25],                                                  
##       sex=M}              => {diseaPH= 2}         0.3333333  0.6666667    2
## [4]  {diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {illnessday=(15,25]} 0.3333333  1.0000000    2
## [5]  {illnessday=(15,25],                                                  
##       outSC=Fatal-Last}   => {diseaPH= 2}         0.3333333  0.6666667    2
## [6]  {diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {sex=M}              0.3333333  1.0000000    2
## [7]  {sex=M,                                                               
##       outSC=Fatal-Last}   => {diseaPH= 2}         0.3333333  0.6666667    2
## [8]  {illnessday=(35,45],                                                  
##       outSC=Fatal-Last}   => {sex=F}              0.3333333  1.0000000    2
## [9]  {sex=F,                                                               
##       outSC=Fatal-Last}   => {illnessday=(35,45]} 0.3333333  0.6666667    2
## [10] {diseaPH= 4,                                                          
##       outSC=Fatal-Last}   => {sex=F}              0.3333333  1.0000000    2
## [11] {sex=F,                                                               
##       outSC=Fatal-Last}   => {diseaPH= 4}         0.3333333  0.6666667    2
## [12] {illnessday=(15,25],                                                  
##       outSC=Fatal-Last}   => {sex=M}              0.5000000  1.0000000    2
## [13] {sex=M,                                                               
##       outSC=Fatal-Last}   => {illnessday=(15,25]} 0.5000000  1.0000000    2
## [14] {illnessday=(15,25],                                                  
##       diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {sex=M}              0.3333333  1.0000000    2
## [15] {sex=M,                                                               
##       diseaPH= 2,                                                          
##       outSC=Fatal-Last}   => {illnessday=(15,25]} 0.3333333  1.0000000    2
## [16] {illnessday=(15,25],                                                  
##       sex=M,                                                               
##       outSC=Fatal-Last}   => {diseaPH= 2}         0.3333333  0.6666667    2
## [17] {illnessday=(15,25],                                                  
##       diseaPH= 2}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [18] {sex=M,                                                               
##       diseaPH= 2}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [19] {illnessday=(35,45],                                                  
##       sex=F}              => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [20] {sex=F,                                                               
##       diseaPH= 4}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## [21] {illnessday=(15,25],                                                  
##       sex=M}              => {outSC=Fatal-Last}   0.5000000  1.0000000    1
## [22] {illnessday=(15,25],                                                  
##       sex=M,                                                               
##       diseaPH= 2}         => {outSC=Fatal-Last}   0.3333333  1.0000000    1
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Healthy-First"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Healthy-First",]
guizdata <- as(guizdata,"transactions")
summary(guizdata)
## transactions as itemMatrix in sparse format with
##  400 rows (elements/itemsets/transactions) and
##  116 columns (items) and a density of 0.02521552 
## 
## most frequent items:
##      outSC=Healthy-First     factorgroup=趋化因子     factorgroup=生长因子 
##                      400                      130                      130 
##       factorgroup=白介素 factorgroup=肿瘤坏死因子                  (Other) 
##                       70                       20                      420 
## 
## element (itemset/transaction) length distribution:
## sizes
##   2   3 
##  30 370 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   3.000   3.000   2.925   3.000   3.000 
## 
## includes extended item information - examples:
##        labels variables levels
## 1  factor=ANG    factor    ANG
## 2 factor=BDNF    factor   BDNF
## 3  factor=BLC    factor    BLC
## 
## includes extended transaction information - examples:
##   transactionID
## 1          1601
## 2          1602
## 3          1603
## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Healthy-First数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.05, ##支持度
                                           conf = 0.1, ## 置信度
                                           minlen = 2),
                 appearance = list(rhs = c("outSC=Healthy-First"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.1    0.1    1 none FALSE            TRUE       5    0.05      2
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 20 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[87 item(s), 400 transaction(s)] done [0.00s].
## sorting and recoding items ... [5 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 done [0.00s].
## writing ... [4 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 4 rules
## 
## rule length distribution (lhs + rhs):sizes
## 2 
## 4 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       2       2       2       2       2       2 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.0500   Min.   :1    Min.   :1  
##  1st Qu.:0.1437   1st Qu.:1    1st Qu.:1  
##  Median :0.2500   Median :1    Median :1  
##  Mean   :0.2188   Mean   :1    Mean   :1  
##  3rd Qu.:0.3250   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.3250   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           400    0.05        0.1
inspect(guize)
##     lhs                           rhs                   support confidence
## [1] {factorgroup=肿瘤坏死因子} => {outSC=Healthy-First} 0.050   1         
## [2] {factorgroup=白介素}       => {outSC=Healthy-First} 0.175   1         
## [3] {factorgroup=生长因子}     => {outSC=Healthy-First} 0.325   1         
## [4] {factorgroup=趋化因子}     => {outSC=Healthy-First} 0.325   1         
##     lift
## [1] 1   
## [2] 1   
## [3] 1   
## [4] 1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.05, ##支持度
                                           conf = 0.1, ## 置信度
                                           minlen = 2))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.1    0.1    1 none FALSE            TRUE       5    0.05      2
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 20 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[87 item(s), 400 transaction(s)] done [0.00s].
## sorting and recoding items ... [5 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 done [0.00s].
## writing ... [7 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 7 rules
## 
## rule length distribution (lhs + rhs):sizes
## 2 
## 7 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       2       2       2       2       2       2 
## 
## summary of quality measures:
##     support         confidence          lift  
##  Min.   :0.0500   Min.   :0.1750   Min.   :1  
##  1st Qu.:0.1750   1st Qu.:0.3250   1st Qu.:1  
##  Median :0.3250   Median :1.0000   Median :1  
##  Mean   :0.2429   Mean   :0.6893   Mean   :1  
##  3rd Qu.:0.3250   3rd Qu.:1.0000   3rd Qu.:1  
##  Max.   :0.3250   Max.   :1.0000   Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           400    0.05        0.1
inspect(guize)
##     lhs                           rhs                    support
## [1] {factorgroup=肿瘤坏死因子} => {outSC=Healthy-First}  0.050  
## [2] {factorgroup=白介素}       => {outSC=Healthy-First}  0.175  
## [3] {outSC=Healthy-First}      => {factorgroup=白介素}   0.175  
## [4] {factorgroup=生长因子}     => {outSC=Healthy-First}  0.325  
## [5] {outSC=Healthy-First}      => {factorgroup=生长因子} 0.325  
## [6] {factorgroup=趋化因子}     => {outSC=Healthy-First}  0.325  
## [7] {outSC=Healthy-First}      => {factorgroup=趋化因子} 0.325  
##     confidence lift
## [1] 1.000      1   
## [2] 1.000      1   
## [3] 0.175      1   
## [4] 1.000      1   
## [5] 0.325      1   
## [6] 1.000      1   
## [7] 0.325      1
inspect(sort(guize,by = "lift"))
##     lhs                           rhs                    support
## [1] {factorgroup=肿瘤坏死因子} => {outSC=Healthy-First}  0.050  
## [2] {factorgroup=白介素}       => {outSC=Healthy-First}  0.175  
## [3] {outSC=Healthy-First}      => {factorgroup=白介素}   0.175  
## [4] {factorgroup=生长因子}     => {outSC=Healthy-First}  0.325  
## [5] {outSC=Healthy-First}      => {factorgroup=生长因子} 0.325  
## [6] {factorgroup=趋化因子}     => {outSC=Healthy-First}  0.325  
## [7] {outSC=Healthy-First}      => {factorgroup=趋化因子} 0.325  
##     confidence lift
## [1] 1.000      1   
## [2] 1.000      1   
## [3] 0.175      1   
## [4] 1.000      1   
## [5] 0.325      1   
## [6] 1.000      1   
## [7] 0.325      1
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Mild-All other"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Mild-All other",]
guizdata <- as(guizdata,"transactions")
summary(guizdata)
## transactions as itemMatrix in sparse format with
##  480 rows (elements/itemsets/transactions) and
##  116 columns (items) and a density of 0.05969828 
## 
## most frequent items:
##           diseaPH= 2 outSC=Mild-All other                sex=M 
##                  480                  480                  400 
##   illnessday=(15,25]          age=(35,45]              (Other) 
##                  320                  240                 1404 
## 
## element (itemset/transaction) length distribution:
## sizes
##   6   7 
##  36 444 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   6.000   7.000   7.000   6.925   7.000   7.000 
## 
## includes extended item information - examples:
##        labels variables levels
## 1  factor=ANG    factor    ANG
## 2 factor=BDNF    factor   BDNF
## 3  factor=BLC    factor    BLC
## 
## includes extended transaction information - examples:
##   transactionID
## 1          2001
## 2          2002
## 3          2003
## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Mild-All other数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3),
                 appearance = list(rhs = c("outSC=Mild-All other"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 144 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[96 item(s), 480 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [14 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 14 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 10  4 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.286   3.750   4.000 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3250   Min.   :1    Min.   :1  
##  1st Qu.:0.3333   1st Qu.:1    1st Qu.:1  
##  Median :0.3333   Median :1    Median :1  
##  Mean   :0.4274   Mean   :1    Mean   :1  
##  3rd Qu.:0.5000   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.8333   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           480     0.3        0.3
inspect(guize)
##      lhs                       rhs                      support confidence lift
## [1]  {factorgroup=生长因子,                                                    
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3250000          1    1
## [2]  {factorgroup=趋化因子,                                                    
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3250000          1    1
## [3]  {illnessday=(5,15],                                                       
##       sex=M}                => {outSC=Mild-All other} 0.3333333          1    1
## [4]  {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333          1    1
## [5]  {illnessday=(15,25],                                                      
##       age=(35,45]}          => {outSC=Mild-All other} 0.3333333          1    1
## [6]  {age=(35,45],                                                             
##       sex=M}                => {outSC=Mild-All other} 0.3333333          1    1
## [7]  {age=(35,45],                                                             
##       diseaPH= 2}           => {outSC=Mild-All other} 0.5000000          1    1
## [8]  {illnessday=(15,25],                                                      
##       sex=M}                => {outSC=Mild-All other} 0.5000000          1    1
## [9]  {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {outSC=Mild-All other} 0.6666667          1    1
## [10] {sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.8333333          1    1
## [11] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333          1    1
## [12] {illnessday=(15,25],                                                      
##       age=(35,45],                                                             
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333          1    1
## [13] {age=(35,45],                                                             
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333          1    1
## [14] {illnessday=(15,25],                                                      
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.5000000          1    1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 144 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[96 item(s), 480 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [58 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 58 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 42 16 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.276   4.000   4.000 
## 
## summary of quality measures:
##     support         confidence         lift       
##  Min.   :0.3250   Min.   :0.325   Min.   :0.8000  
##  1st Qu.:0.3333   1st Qu.:0.600   1st Qu.:1.0000  
##  Median :0.3333   Median :1.000   Median :1.0000  
##  Mean   :0.4129   Mean   :0.792   Mean   :0.9897  
##  3rd Qu.:0.5000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :0.8333   Max.   :1.000   Max.   :1.2000  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           480     0.3        0.3
inspect(guize)
##      lhs                       rhs                      support confidence lift
## [1]  {factorgroup=生长因子,                                                    
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3250000  1.0000000  1.0
## [2]  {factorgroup=生长因子,                                                    
##       outSC=Mild-All other} => {diseaPH= 2}           0.3250000  1.0000000  1.0
## [3]  {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {factorgroup=生长因子} 0.3250000  0.3250000  1.0
## [4]  {factorgroup=趋化因子,                                                    
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3250000  1.0000000  1.0
## [5]  {factorgroup=趋化因子,                                                    
##       outSC=Mild-All other} => {diseaPH= 2}           0.3250000  1.0000000  1.0
## [6]  {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {factorgroup=趋化因子} 0.3250000  0.3250000  1.0
## [7]  {illnessday=(5,15],                                                       
##       sex=M}                => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [8]  {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {sex=M}                0.3333333  1.0000000  1.2
## [9]  {sex=M,                                                                   
##       diseaPH= 2}           => {illnessday=(5,15]}    0.3333333  0.4000000  1.2
## [10] {illnessday=(5,15],                                                       
##       sex=M}                => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [11] {illnessday=(5,15],                                                       
##       outSC=Mild-All other} => {sex=M}                0.3333333  1.0000000  1.2
## [12] {sex=M,                                                                   
##       outSC=Mild-All other} => {illnessday=(5,15]}    0.3333333  0.4000000  1.2
## [13] {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [14] {illnessday=(5,15],                                                       
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [15] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(5,15]}    0.3333333  0.3333333  1.0
## [16] {illnessday=(15,25],                                                      
##       age=(35,45]}          => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [17] {age=(35,45],                                                             
##       diseaPH= 2}           => {illnessday=(15,25]}   0.3333333  0.6666667  1.0
## [18] {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {age=(35,45]}          0.3333333  0.5000000  1.0
## [19] {illnessday=(15,25],                                                      
##       age=(35,45]}          => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [20] {age=(35,45],                                                             
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.3333333  0.6666667  1.0
## [21] {illnessday=(15,25],                                                      
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.5000000  1.0
## [22] {age=(35,45],                                                             
##       sex=M}                => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [23] {age=(35,45],                                                             
##       diseaPH= 2}           => {sex=M}                0.3333333  0.6666667  0.8
## [24] {sex=M,                                                                   
##       diseaPH= 2}           => {age=(35,45]}          0.3333333  0.4000000  0.8
## [25] {age=(35,45],                                                             
##       sex=M}                => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [26] {age=(35,45],                                                             
##       outSC=Mild-All other} => {sex=M}                0.3333333  0.6666667  0.8
## [27] {sex=M,                                                                   
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.4000000  0.8
## [28] {age=(35,45],                                                             
##       diseaPH= 2}           => {outSC=Mild-All other} 0.5000000  1.0000000  1.0
## [29] {age=(35,45],                                                             
##       outSC=Mild-All other} => {diseaPH= 2}           0.5000000  1.0000000  1.0
## [30] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {age=(35,45]}          0.5000000  0.5000000  1.0
## [31] {illnessday=(15,25],                                                      
##       sex=M}                => {diseaPH= 2}           0.5000000  1.0000000  1.0
## [32] {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {sex=M}                0.5000000  0.7500000  0.9
## [33] {sex=M,                                                                   
##       diseaPH= 2}           => {illnessday=(15,25]}   0.5000000  0.6000000  0.9
## [34] {illnessday=(15,25],                                                      
##       sex=M}                => {outSC=Mild-All other} 0.5000000  1.0000000  1.0
## [35] {illnessday=(15,25],                                                      
##       outSC=Mild-All other} => {sex=M}                0.5000000  0.7500000  0.9
## [36] {sex=M,                                                                   
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.5000000  0.6000000  0.9
## [37] {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {outSC=Mild-All other} 0.6666667  1.0000000  1.0
## [38] {illnessday=(15,25],                                                      
##       outSC=Mild-All other} => {diseaPH= 2}           0.6666667  1.0000000  1.0
## [39] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.6666667  0.6666667  1.0
## [40] {sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.8333333  1.0000000  1.0
## [41] {sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.8333333  1.0000000  1.0
## [42] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.8333333  0.8333333  1.0
## [43] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [44] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [45] {illnessday=(5,15],                                                       
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.3333333  1.0000000  1.2
## [46] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(5,15]}    0.3333333  0.4000000  1.2
## [47] {illnessday=(15,25],                                                      
##       age=(35,45],                                                             
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [48] {illnessday=(15,25],                                                      
##       age=(35,45],                                                             
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [49] {age=(35,45],                                                             
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.3333333  0.6666667  1.0
## [50] {illnessday=(15,25],                                                      
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.5000000  1.0
## [51] {age=(35,45],                                                             
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [52] {age=(35,45],                                                             
##       sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [53] {age=(35,45],                                                             
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.3333333  0.6666667  0.8
## [54] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.4000000  0.8
## [55] {illnessday=(15,25],                                                      
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.5000000  1.0000000  1.0
## [56] {illnessday=(15,25],                                                      
##       sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.5000000  1.0000000  1.0
## [57] {illnessday=(15,25],                                                      
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.5000000  0.7500000  0.9
## [58] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.5000000  0.6000000  0.9
inspect(sort(guize,by = "lift"))
##      lhs                       rhs                      support confidence lift
## [1]  {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {sex=M}                0.3333333  1.0000000  1.2
## [2]  {sex=M,                                                                   
##       diseaPH= 2}           => {illnessday=(5,15]}    0.3333333  0.4000000  1.2
## [3]  {illnessday=(5,15],                                                       
##       outSC=Mild-All other} => {sex=M}                0.3333333  1.0000000  1.2
## [4]  {sex=M,                                                                   
##       outSC=Mild-All other} => {illnessday=(5,15]}    0.3333333  0.4000000  1.2
## [5]  {illnessday=(5,15],                                                       
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.3333333  1.0000000  1.2
## [6]  {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(5,15]}    0.3333333  0.4000000  1.2
## [7]  {factorgroup=生长因子,                                                    
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3250000  1.0000000  1.0
## [8]  {factorgroup=生长因子,                                                    
##       outSC=Mild-All other} => {diseaPH= 2}           0.3250000  1.0000000  1.0
## [9]  {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {factorgroup=生长因子} 0.3250000  0.3250000  1.0
## [10] {factorgroup=趋化因子,                                                    
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3250000  1.0000000  1.0
## [11] {factorgroup=趋化因子,                                                    
##       outSC=Mild-All other} => {diseaPH= 2}           0.3250000  1.0000000  1.0
## [12] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {factorgroup=趋化因子} 0.3250000  0.3250000  1.0
## [13] {illnessday=(5,15],                                                       
##       sex=M}                => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [14] {illnessday=(5,15],                                                       
##       sex=M}                => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [15] {illnessday=(5,15],                                                       
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [16] {illnessday=(5,15],                                                       
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [17] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(5,15]}    0.3333333  0.3333333  1.0
## [18] {illnessday=(15,25],                                                      
##       age=(35,45]}          => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [19] {age=(35,45],                                                             
##       diseaPH= 2}           => {illnessday=(15,25]}   0.3333333  0.6666667  1.0
## [20] {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {age=(35,45]}          0.3333333  0.5000000  1.0
## [21] {illnessday=(15,25],                                                      
##       age=(35,45]}          => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [22] {age=(35,45],                                                             
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.3333333  0.6666667  1.0
## [23] {illnessday=(15,25],                                                      
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.5000000  1.0
## [24] {age=(35,45],                                                             
##       sex=M}                => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [25] {age=(35,45],                                                             
##       sex=M}                => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [26] {age=(35,45],                                                             
##       diseaPH= 2}           => {outSC=Mild-All other} 0.5000000  1.0000000  1.0
## [27] {age=(35,45],                                                             
##       outSC=Mild-All other} => {diseaPH= 2}           0.5000000  1.0000000  1.0
## [28] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {age=(35,45]}          0.5000000  0.5000000  1.0
## [29] {illnessday=(15,25],                                                      
##       sex=M}                => {diseaPH= 2}           0.5000000  1.0000000  1.0
## [30] {illnessday=(15,25],                                                      
##       sex=M}                => {outSC=Mild-All other} 0.5000000  1.0000000  1.0
## [31] {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {outSC=Mild-All other} 0.6666667  1.0000000  1.0
## [32] {illnessday=(15,25],                                                      
##       outSC=Mild-All other} => {diseaPH= 2}           0.6666667  1.0000000  1.0
## [33] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.6666667  0.6666667  1.0
## [34] {sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.8333333  1.0000000  1.0
## [35] {sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.8333333  1.0000000  1.0
## [36] {diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.8333333  0.8333333  1.0
## [37] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [38] {illnessday=(5,15],                                                       
##       sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [39] {illnessday=(15,25],                                                      
##       age=(35,45],                                                             
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [40] {illnessday=(15,25],                                                      
##       age=(35,45],                                                             
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [41] {age=(35,45],                                                             
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.3333333  0.6666667  1.0
## [42] {illnessday=(15,25],                                                      
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.5000000  1.0
## [43] {age=(35,45],                                                             
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.3333333  1.0000000  1.0
## [44] {age=(35,45],                                                             
##       sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.3333333  1.0000000  1.0
## [45] {illnessday=(15,25],                                                      
##       sex=M,                                                                   
##       diseaPH= 2}           => {outSC=Mild-All other} 0.5000000  1.0000000  1.0
## [46] {illnessday=(15,25],                                                      
##       sex=M,                                                                   
##       outSC=Mild-All other} => {diseaPH= 2}           0.5000000  1.0000000  1.0
## [47] {illnessday=(15,25],                                                      
##       diseaPH= 2}           => {sex=M}                0.5000000  0.7500000  0.9
## [48] {sex=M,                                                                   
##       diseaPH= 2}           => {illnessday=(15,25]}   0.5000000  0.6000000  0.9
## [49] {illnessday=(15,25],                                                      
##       outSC=Mild-All other} => {sex=M}                0.5000000  0.7500000  0.9
## [50] {sex=M,                                                                   
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.5000000  0.6000000  0.9
## [51] {illnessday=(15,25],                                                      
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.5000000  0.7500000  0.9
## [52] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {illnessday=(15,25]}   0.5000000  0.6000000  0.9
## [53] {age=(35,45],                                                             
##       diseaPH= 2}           => {sex=M}                0.3333333  0.6666667  0.8
## [54] {sex=M,                                                                   
##       diseaPH= 2}           => {age=(35,45]}          0.3333333  0.4000000  0.8
## [55] {age=(35,45],                                                             
##       outSC=Mild-All other} => {sex=M}                0.3333333  0.6666667  0.8
## [56] {sex=M,                                                                   
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.4000000  0.8
## [57] {age=(35,45],                                                             
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {sex=M}                0.3333333  0.6666667  0.8
## [58] {sex=M,                                                                   
##       diseaPH= 2,                                                              
##       outSC=Mild-All other} => {age=(35,45]}          0.3333333  0.4000000  0.8
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Mild-First"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Mild-First",]
guizdata <- as(guizdata,"transactions")

## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Mild-First数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3),
                 appearance = list(rhs = c("outSC=Mild-First"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 168 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[98 item(s), 560 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [3 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 3 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 
## 3 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.4286   Min.   :1    Min.   :1  
##  1st Qu.:0.4286   1st Qu.:1    1st Qu.:1  
##  Median :0.4286   Median :1    Median :1  
##  Mean   :0.4762   Mean   :1    Mean   :1  
##  3rd Qu.:0.5000   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.5714   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           560     0.3        0.3
inspect(guize)
##     lhs                               rhs                support  
## [1] {illnessday=(5,15],diseaPH= 1} => {outSC=Mild-First} 0.4285714
## [2] {sex=M,diseaPH= 1}             => {outSC=Mild-First} 0.4285714
## [3] {illnessday=(5,15],sex=M}      => {outSC=Mild-First} 0.5714286
##     confidence lift
## [1] 1          1   
## [2] 1          1   
## [3] 1          1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 168 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[98 item(s), 560 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [9 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 9 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 
## 9 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support         confidence          lift       
##  Min.   :0.4286   Min.   :0.6000   Min.   :0.8400  
##  1st Qu.:0.4286   1st Qu.:0.6000   1st Qu.:0.8400  
##  Median :0.4286   Median :0.8000   Median :1.0000  
##  Mean   :0.4762   Mean   :0.7778   Mean   :0.9556  
##  3rd Qu.:0.5714   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :0.5714   Max.   :1.0000   Max.   :1.1200  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           560     0.3        0.3
inspect(guize)
##     lhs                                     rhs                 support  
## [1] {illnessday=(5,15],sex=M}            => {outSC=Mild-First}  0.5714286
## [2] {illnessday=(5,15],outSC=Mild-First} => {sex=M}             0.5714286
## [3] {sex=M,outSC=Mild-First}             => {illnessday=(5,15]} 0.5714286
## [4] {illnessday=(5,15],diseaPH= 1}       => {outSC=Mild-First}  0.4285714
## [5] {illnessday=(5,15],outSC=Mild-First} => {diseaPH= 1}        0.4285714
## [6] {diseaPH= 1,outSC=Mild-First}        => {illnessday=(5,15]} 0.4285714
## [7] {sex=M,diseaPH= 1}                   => {outSC=Mild-First}  0.4285714
## [8] {sex=M,outSC=Mild-First}             => {diseaPH= 1}        0.4285714
## [9] {diseaPH= 1,outSC=Mild-First}        => {sex=M}             0.4285714
##     confidence lift
## [1] 1.0        1.00
## [2] 0.8        1.12
## [3] 0.8        1.12
## [4] 1.0        1.00
## [5] 0.6        0.84
## [6] 0.6        0.84
## [7] 1.0        1.00
## [8] 0.6        0.84
## [9] 0.6        0.84
inspect(sort(guize,by = "lift"))
##     lhs                                     rhs                 support  
## [1] {illnessday=(5,15],outSC=Mild-First} => {sex=M}             0.5714286
## [2] {sex=M,outSC=Mild-First}             => {illnessday=(5,15]} 0.5714286
## [3] {illnessday=(5,15],sex=M}            => {outSC=Mild-First}  0.5714286
## [4] {illnessday=(5,15],diseaPH= 1}       => {outSC=Mild-First}  0.4285714
## [5] {sex=M,diseaPH= 1}                   => {outSC=Mild-First}  0.4285714
## [6] {illnessday=(5,15],outSC=Mild-First} => {diseaPH= 1}        0.4285714
## [7] {diseaPH= 1,outSC=Mild-First}        => {illnessday=(5,15]} 0.4285714
## [8] {sex=M,outSC=Mild-First}             => {diseaPH= 1}        0.4285714
## [9] {diseaPH= 1,outSC=Mild-First}        => {sex=M}             0.4285714
##     confidence lift
## [1] 0.8        1.12
## [2] 0.8        1.12
## [3] 1.0        1.00
## [4] 1.0        1.00
## [5] 1.0        1.00
## [6] 0.6        0.84
## [7] 0.6        0.84
## [8] 0.6        0.84
## [9] 0.6        0.84
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Severe-All other"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Severe-All other",]
guizdata <- as(guizdata,"transactions")

## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Severe-All other数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3),
                 appearance = list(rhs = c("outSC=Severe-All other"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 480 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[100 item(s), 1600 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [6 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 6 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 4 
## 5 1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.167   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3000   Min.   :1    Min.   :1  
##  1st Qu.:0.3375   1st Qu.:1    1st Qu.:1  
##  Median :0.4500   Median :1    Median :1  
##  Mean   :0.4333   Mean   :1    Mean   :1  
##  3rd Qu.:0.4875   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.6000   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata          1600     0.3        0.3
inspect(guize)
##     lhs                     rhs                      support confidence lift
## [1] {age=(75,85],                                                           
##      sex=M}              => {outSC=Severe-All other}    0.30          1    1
## [2] {illnessday=(15,25],                                                    
##      sex=M}              => {outSC=Severe-All other}    0.30          1    1
## [3] {illnessday=(5,15],                                                     
##      diseaPH= 2}         => {outSC=Severe-All other}    0.50          1    1
## [4] {illnessday=(5,15],                                                     
##      sex=M}              => {outSC=Severe-All other}    0.45          1    1
## [5] {sex=M,                                                                 
##      diseaPH= 2}         => {outSC=Severe-All other}    0.60          1    1
## [6] {illnessday=(5,15],                                                     
##      sex=M,                                                                 
##      diseaPH= 2}         => {outSC=Severe-All other}    0.45          1    1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 480 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[100 item(s), 1600 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [22 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 22 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 18  4 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.182   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence          lift       
##  Min.   :0.3000   Min.   :0.3529   Min.   :0.8824  
##  1st Qu.:0.3375   1st Qu.:0.7500   1st Qu.:1.0000  
##  Median :0.4500   Median :0.9000   Median :1.0588  
##  Mean   :0.4364   Mean   :0.8392   Mean   :1.1402  
##  3rd Qu.:0.4875   3rd Qu.:1.0000   3rd Qu.:1.3655  
##  Max.   :0.6000   Max.   :1.0000   Max.   :1.5000  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata          1600     0.3        0.3
inspect(guize)
##      lhs                         rhs                      support confidence      lift
## [1]  {age=(75,85],                                                                    
##       sex=M}                  => {outSC=Severe-All other}    0.30  1.0000000 1.0000000
## [2]  {age=(75,85],                                                                    
##       outSC=Severe-All other} => {sex=M}                     0.30  1.0000000 1.1764706
## [3]  {sex=M,                                                                          
##       outSC=Severe-All other} => {age=(75,85]}               0.30  0.3529412 1.1764706
## [4]  {illnessday=(15,25],                                                             
##       sex=M}                  => {outSC=Severe-All other}    0.30  1.0000000 1.0000000
## [5]  {illnessday=(15,25],                                                             
##       outSC=Severe-All other} => {sex=M}                     0.30  0.7500000 0.8823529
## [6]  {sex=M,                                                                          
##       outSC=Severe-All other} => {illnessday=(15,25]}        0.30  0.3529412 0.8823529
## [7]  {illnessday=(5,15],                                                              
##       diseaPH= 2}             => {sex=M}                     0.45  0.9000000 1.0588235
## [8]  {illnessday=(5,15],                                                              
##       sex=M}                  => {diseaPH= 2}                0.45  1.0000000 1.4285714
## [9]  {sex=M,                                                                          
##       diseaPH= 2}             => {illnessday=(5,15]}         0.45  0.7500000 1.5000000
## [10] {illnessday=(5,15],                                                              
##       diseaPH= 2}             => {outSC=Severe-All other}    0.50  1.0000000 1.0000000
## [11] {illnessday=(5,15],                                                              
##       outSC=Severe-All other} => {diseaPH= 2}                0.50  1.0000000 1.4285714
## [12] {diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {illnessday=(5,15]}         0.50  0.7142857 1.4285714
## [13] {illnessday=(5,15],                                                              
##       sex=M}                  => {outSC=Severe-All other}    0.45  1.0000000 1.0000000
## [14] {illnessday=(5,15],                                                              
##       outSC=Severe-All other} => {sex=M}                     0.45  0.9000000 1.0588235
## [15] {sex=M,                                                                          
##       outSC=Severe-All other} => {illnessday=(5,15]}         0.45  0.5294118 1.0588235
## [16] {sex=M,                                                                          
##       diseaPH= 2}             => {outSC=Severe-All other}    0.60  1.0000000 1.0000000
## [17] {diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {sex=M}                     0.60  0.8571429 1.0084034
## [18] {sex=M,                                                                          
##       outSC=Severe-All other} => {diseaPH= 2}                0.60  0.7058824 1.0084034
## [19] {illnessday=(5,15],                                                              
##       sex=M,                                                                          
##       diseaPH= 2}             => {outSC=Severe-All other}    0.45  1.0000000 1.0000000
## [20] {illnessday=(5,15],                                                              
##       diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {sex=M}                     0.45  0.9000000 1.0588235
## [21] {illnessday=(5,15],                                                              
##       sex=M,                                                                          
##       outSC=Severe-All other} => {diseaPH= 2}                0.45  1.0000000 1.4285714
## [22] {sex=M,                                                                          
##       diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {illnessday=(5,15]}         0.45  0.7500000 1.5000000
inspect(sort(guize,by = "lift"))
##      lhs                         rhs                      support confidence      lift
## [1]  {sex=M,                                                                          
##       diseaPH= 2}             => {illnessday=(5,15]}         0.45  0.7500000 1.5000000
## [2]  {sex=M,                                                                          
##       diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {illnessday=(5,15]}         0.45  0.7500000 1.5000000
## [3]  {illnessday=(5,15],                                                              
##       sex=M}                  => {diseaPH= 2}                0.45  1.0000000 1.4285714
## [4]  {illnessday=(5,15],                                                              
##       outSC=Severe-All other} => {diseaPH= 2}                0.50  1.0000000 1.4285714
## [5]  {diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {illnessday=(5,15]}         0.50  0.7142857 1.4285714
## [6]  {illnessday=(5,15],                                                              
##       sex=M,                                                                          
##       outSC=Severe-All other} => {diseaPH= 2}                0.45  1.0000000 1.4285714
## [7]  {age=(75,85],                                                                    
##       outSC=Severe-All other} => {sex=M}                     0.30  1.0000000 1.1764706
## [8]  {sex=M,                                                                          
##       outSC=Severe-All other} => {age=(75,85]}               0.30  0.3529412 1.1764706
## [9]  {illnessday=(5,15],                                                              
##       diseaPH= 2}             => {sex=M}                     0.45  0.9000000 1.0588235
## [10] {illnessday=(5,15],                                                              
##       outSC=Severe-All other} => {sex=M}                     0.45  0.9000000 1.0588235
## [11] {sex=M,                                                                          
##       outSC=Severe-All other} => {illnessday=(5,15]}         0.45  0.5294118 1.0588235
## [12] {illnessday=(5,15],                                                              
##       diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {sex=M}                     0.45  0.9000000 1.0588235
## [13] {diseaPH= 2,                                                                     
##       outSC=Severe-All other} => {sex=M}                     0.60  0.8571429 1.0084034
## [14] {sex=M,                                                                          
##       outSC=Severe-All other} => {diseaPH= 2}                0.60  0.7058824 1.0084034
## [15] {age=(75,85],                                                                    
##       sex=M}                  => {outSC=Severe-All other}    0.30  1.0000000 1.0000000
## [16] {illnessday=(15,25],                                                             
##       sex=M}                  => {outSC=Severe-All other}    0.30  1.0000000 1.0000000
## [17] {illnessday=(5,15],                                                              
##       diseaPH= 2}             => {outSC=Severe-All other}    0.50  1.0000000 1.0000000
## [18] {illnessday=(5,15],                                                              
##       sex=M}                  => {outSC=Severe-All other}    0.45  1.0000000 1.0000000
## [19] {sex=M,                                                                          
##       diseaPH= 2}             => {outSC=Severe-All other}    0.60  1.0000000 1.0000000
## [20] {illnessday=(5,15],                                                              
##       sex=M,                                                                          
##       diseaPH= 2}             => {outSC=Severe-All other}    0.45  1.0000000 1.0000000
## [21] {sex=M,                                                                          
##       outSC=Severe-All other} => {illnessday=(15,25]}        0.30  0.3529412 0.8823529
## [22] {illnessday=(15,25],                                                             
##       outSC=Severe-All other} => {sex=M}                     0.30  0.7500000 0.8823529
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Severe-First"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Severe-First",]
guizdata <- as(guizdata,"transactions")

## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Severe-First数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3),
                 appearance = list(rhs = c("outSC=Severe-First"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 264 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[98 item(s), 880 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [7 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 7 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 4 
## 5 2 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.286   3.500   4.000 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3636   Min.   :1    Min.   :1  
##  1st Qu.:0.3636   1st Qu.:1    1st Qu.:1  
##  Median :0.5455   Median :1    Median :1  
##  Mean   :0.5065   Mean   :1    Mean   :1  
##  3rd Qu.:0.5455   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.8182   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           880     0.3        0.3
inspect(guize)
##     lhs                    rhs                    support confidence lift
## [1] {illnessday=(5,15],                                                  
##      age=(75,85]}       => {outSC=Severe-First} 0.3636364          1    1
## [2] {age=(75,85],                                                        
##      sex=M}             => {outSC=Severe-First} 0.3636364          1    1
## [3] {illnessday=(5,15],                                                  
##      diseaPH= 1}        => {outSC=Severe-First} 0.5454545          1    1
## [4] {sex=M,                                                              
##      diseaPH= 1}        => {outSC=Severe-First} 0.5454545          1    1
## [5] {illnessday=(5,15],                                                  
##      sex=M}             => {outSC=Severe-First} 0.8181818          1    1
## [6] {illnessday=(5,15],                                                  
##      age=(75,85],                                                        
##      sex=M}             => {outSC=Severe-First} 0.3636364          1    1
## [7] {illnessday=(5,15],                                                  
##      sex=M,                                                              
##      diseaPH= 1}        => {outSC=Severe-First} 0.5454545          1    1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 264 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[98 item(s), 880 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [29 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 29 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3  4 
## 21  8 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.276   4.000   4.000 
## 
## summary of quality measures:
##     support         confidence          lift       
##  Min.   :0.3636   Min.   :0.4444   Min.   :0.9167  
##  1st Qu.:0.3636   1st Qu.:0.6667   1st Qu.:1.0000  
##  Median :0.5455   Median :1.0000   Median :1.2222  
##  Mean   :0.4922   Mean   :0.8602   Mean   :1.1054  
##  3rd Qu.:0.5455   3rd Qu.:1.0000   3rd Qu.:1.2222  
##  Max.   :0.8182   Max.   :1.0000   Max.   :1.2222  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           880     0.3        0.3
inspect(guize)
##      lhs                     rhs                    support confidence      lift
## [1]  {illnessday=(5,15],                                                        
##       age=(75,85]}        => {sex=M}              0.3636364  1.0000000 1.2222222
## [2]  {age=(75,85],                                                              
##       sex=M}              => {illnessday=(5,15]}  0.3636364  1.0000000 1.2222222
## [3]  {illnessday=(5,15],                                                        
##       sex=M}              => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [4]  {illnessday=(5,15],                                                        
##       age=(75,85]}        => {outSC=Severe-First} 0.3636364  1.0000000 1.0000000
## [5]  {age=(75,85],                                                              
##       outSC=Severe-First} => {illnessday=(5,15]}  0.3636364  1.0000000 1.2222222
## [6]  {illnessday=(5,15],                                                        
##       outSC=Severe-First} => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [7]  {age=(75,85],                                                              
##       sex=M}              => {outSC=Severe-First} 0.3636364  1.0000000 1.0000000
## [8]  {age=(75,85],                                                              
##       outSC=Severe-First} => {sex=M}              0.3636364  1.0000000 1.2222222
## [9]  {sex=M,                                                                    
##       outSC=Severe-First} => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [10] {illnessday=(5,15],                                                        
##       diseaPH= 1}         => {sex=M}              0.5454545  1.0000000 1.2222222
## [11] {sex=M,                                                                    
##       diseaPH= 1}         => {illnessday=(5,15]}  0.5454545  1.0000000 1.2222222
## [12] {illnessday=(5,15],                                                        
##       sex=M}              => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## [13] {illnessday=(5,15],                                                        
##       diseaPH= 1}         => {outSC=Severe-First} 0.5454545  1.0000000 1.0000000
## [14] {diseaPH= 1,                                                               
##       outSC=Severe-First} => {illnessday=(5,15]}  0.5454545  0.7500000 0.9166667
## [15] {illnessday=(5,15],                                                        
##       outSC=Severe-First} => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## [16] {sex=M,                                                                    
##       diseaPH= 1}         => {outSC=Severe-First} 0.5454545  1.0000000 1.0000000
## [17] {diseaPH= 1,                                                               
##       outSC=Severe-First} => {sex=M}              0.5454545  0.7500000 0.9166667
## [18] {sex=M,                                                                    
##       outSC=Severe-First} => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## [19] {illnessday=(5,15],                                                        
##       sex=M}              => {outSC=Severe-First} 0.8181818  1.0000000 1.0000000
## [20] {illnessday=(5,15],                                                        
##       outSC=Severe-First} => {sex=M}              0.8181818  1.0000000 1.2222222
## [21] {sex=M,                                                                    
##       outSC=Severe-First} => {illnessday=(5,15]}  0.8181818  1.0000000 1.2222222
## [22] {illnessday=(5,15],                                                        
##       age=(75,85],                                                              
##       sex=M}              => {outSC=Severe-First} 0.3636364  1.0000000 1.0000000
## [23] {illnessday=(5,15],                                                        
##       age=(75,85],                                                              
##       outSC=Severe-First} => {sex=M}              0.3636364  1.0000000 1.2222222
## [24] {age=(75,85],                                                              
##       sex=M,                                                                    
##       outSC=Severe-First} => {illnessday=(5,15]}  0.3636364  1.0000000 1.2222222
## [25] {illnessday=(5,15],                                                        
##       sex=M,                                                                    
##       outSC=Severe-First} => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [26] {illnessday=(5,15],                                                        
##       sex=M,                                                                    
##       diseaPH= 1}         => {outSC=Severe-First} 0.5454545  1.0000000 1.0000000
## [27] {illnessday=(5,15],                                                        
##       diseaPH= 1,                                                               
##       outSC=Severe-First} => {sex=M}              0.5454545  1.0000000 1.2222222
## [28] {sex=M,                                                                    
##       diseaPH= 1,                                                               
##       outSC=Severe-First} => {illnessday=(5,15]}  0.5454545  1.0000000 1.2222222
## [29] {illnessday=(5,15],                                                        
##       sex=M,                                                                    
##       outSC=Severe-First} => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
inspect(sort(guize,by = "lift"))
##      lhs                     rhs                    support confidence      lift
## [1]  {illnessday=(5,15],                                                        
##       age=(75,85]}        => {sex=M}              0.3636364  1.0000000 1.2222222
## [2]  {age=(75,85],                                                              
##       sex=M}              => {illnessday=(5,15]}  0.3636364  1.0000000 1.2222222
## [3]  {age=(75,85],                                                              
##       outSC=Severe-First} => {illnessday=(5,15]}  0.3636364  1.0000000 1.2222222
## [4]  {age=(75,85],                                                              
##       outSC=Severe-First} => {sex=M}              0.3636364  1.0000000 1.2222222
## [5]  {illnessday=(5,15],                                                        
##       diseaPH= 1}         => {sex=M}              0.5454545  1.0000000 1.2222222
## [6]  {sex=M,                                                                    
##       diseaPH= 1}         => {illnessday=(5,15]}  0.5454545  1.0000000 1.2222222
## [7]  {illnessday=(5,15],                                                        
##       outSC=Severe-First} => {sex=M}              0.8181818  1.0000000 1.2222222
## [8]  {sex=M,                                                                    
##       outSC=Severe-First} => {illnessday=(5,15]}  0.8181818  1.0000000 1.2222222
## [9]  {illnessday=(5,15],                                                        
##       age=(75,85],                                                              
##       outSC=Severe-First} => {sex=M}              0.3636364  1.0000000 1.2222222
## [10] {age=(75,85],                                                              
##       sex=M,                                                                    
##       outSC=Severe-First} => {illnessday=(5,15]}  0.3636364  1.0000000 1.2222222
## [11] {illnessday=(5,15],                                                        
##       diseaPH= 1,                                                               
##       outSC=Severe-First} => {sex=M}              0.5454545  1.0000000 1.2222222
## [12] {sex=M,                                                                    
##       diseaPH= 1,                                                               
##       outSC=Severe-First} => {illnessday=(5,15]}  0.5454545  1.0000000 1.2222222
## [13] {illnessday=(5,15],                                                        
##       sex=M}              => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [14] {illnessday=(5,15],                                                        
##       outSC=Severe-First} => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [15] {sex=M,                                                                    
##       outSC=Severe-First} => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [16] {illnessday=(5,15],                                                        
##       sex=M,                                                                    
##       outSC=Severe-First} => {age=(75,85]}        0.3636364  0.4444444 1.2222222
## [17] {illnessday=(5,15],                                                        
##       age=(75,85]}        => {outSC=Severe-First} 0.3636364  1.0000000 1.0000000
## [18] {age=(75,85],                                                              
##       sex=M}              => {outSC=Severe-First} 0.3636364  1.0000000 1.0000000
## [19] {illnessday=(5,15],                                                        
##       diseaPH= 1}         => {outSC=Severe-First} 0.5454545  1.0000000 1.0000000
## [20] {sex=M,                                                                    
##       diseaPH= 1}         => {outSC=Severe-First} 0.5454545  1.0000000 1.0000000
## [21] {illnessday=(5,15],                                                        
##       sex=M}              => {outSC=Severe-First} 0.8181818  1.0000000 1.0000000
## [22] {illnessday=(5,15],                                                        
##       age=(75,85],                                                              
##       sex=M}              => {outSC=Severe-First} 0.3636364  1.0000000 1.0000000
## [23] {illnessday=(5,15],                                                        
##       sex=M,                                                                    
##       diseaPH= 1}         => {outSC=Severe-First} 0.5454545  1.0000000 1.0000000
## [24] {illnessday=(5,15],                                                        
##       sex=M}              => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## [25] {diseaPH= 1,                                                               
##       outSC=Severe-First} => {illnessday=(5,15]}  0.5454545  0.7500000 0.9166667
## [26] {illnessday=(5,15],                                                        
##       outSC=Severe-First} => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## [27] {diseaPH= 1,                                                               
##       outSC=Severe-First} => {sex=M}              0.5454545  0.7500000 0.9166667
## [28] {sex=M,                                                                    
##       outSC=Severe-First} => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## [29] {illnessday=(5,15],                                                        
##       sex=M,                                                                    
##       outSC=Severe-First} => {diseaPH= 1}         0.5454545  0.6666667 0.9166667
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")

## 针对 "Severe-Last"  数据的关联分析
osc_group
## [1] "Fatal-All other"  "Fatal-First"      "Fatal-Last"      
## [4] "Healthy-First"    "Mild-All other"   "Mild-First"      
## [7] "Severe-All other" "Severe-First"     "Severe-Last"
guizdata <- guanliandata[guanliandata$outSC == "Severe-Last",]
guizdata <- as(guizdata,"transactions")

## 频繁项集
par(cex = 0.8,family = "STKaiti")
itemFrequencyPlot(guizdata,topN = 30,main = "Severe-Last数据频繁的项")

## 挖掘关联规则
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3),
                 appearance = list(rhs = c("outSC=Severe-Last"),
                                   default = "lhs"))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 264 
## 
## set item appearances ...[1 item(s)] done [0.00s].
## set transactions ...[102 item(s), 880 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [3 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 3 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 
## 3 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support         confidence      lift  
##  Min.   :0.3636   Min.   :1    Min.   :1  
##  1st Qu.:0.3636   1st Qu.:1    1st Qu.:1  
##  Median :0.3636   Median :1    Median :1  
##  Mean   :0.4242   Mean   :1    Mean   :1  
##  3rd Qu.:0.4545   3rd Qu.:1    3rd Qu.:1  
##  Max.   :0.5455   Max.   :1    Max.   :1  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           880     0.3        0.3
inspect(guize)
##     lhs                           rhs                 support   confidence
## [1] {age=(75,85],sex=M}        => {outSC=Severe-Last} 0.3636364 1         
## [2] {illnessday=(25,35],sex=M} => {outSC=Severe-Last} 0.3636364 1         
## [3] {sex=M,diseaPH= 4}         => {outSC=Severe-Last} 0.5454545 1         
##     lift
## [1] 1   
## [2] 1   
## [3] 1
plot(guize,method = "graph")

## 分析关联规则的结果如果直接限定右边的选项为outSC=Fatal-All other,
## 得到的规则在本数据中可疑认为没有意义,置信度,提升度均为1
guize <- apriori(guizdata,parameter = list(supp = 0.3, ##支持度
                                           conf = 0.3, ## 置信度
                                           minlen = 3))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.3    0.1    1 none FALSE            TRUE       5     0.3      3
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 264 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[102 item(s), 880 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [9 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(guize)
## set of 9 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 
## 9 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support         confidence          lift       
##  Min.   :0.3636   Min.   :0.4444   Min.   :0.9778  
##  1st Qu.:0.3636   1st Qu.:0.6667   1st Qu.:1.0000  
##  Median :0.3636   Median :0.8571   Median :1.0000  
##  Mean   :0.4242   Mean   :0.8014   Mean   :1.0550  
##  3rd Qu.:0.5455   3rd Qu.:1.0000   3rd Qu.:1.0476  
##  Max.   :0.5455   Max.   :1.0000   Max.   :1.2222  
## 
## mining info:
##      data ntransactions support confidence
##  guizdata           880     0.3        0.3
inspect(guize)
##     lhs                                       rhs                 
## [1] {age=(75,85],sex=M}                    => {outSC=Severe-Last} 
## [2] {age=(75,85],outSC=Severe-Last}        => {sex=M}             
## [3] {sex=M,outSC=Severe-Last}              => {age=(75,85]}       
## [4] {illnessday=(25,35],sex=M}             => {outSC=Severe-Last} 
## [5] {illnessday=(25,35],outSC=Severe-Last} => {sex=M}             
## [6] {sex=M,outSC=Severe-Last}              => {illnessday=(25,35]}
## [7] {sex=M,diseaPH= 4}                     => {outSC=Severe-Last} 
## [8] {diseaPH= 4,outSC=Severe-Last}         => {sex=M}             
## [9] {sex=M,outSC=Severe-Last}              => {diseaPH= 4}        
##     support   confidence lift     
## [1] 0.3636364 1.0000000  1.0000000
## [2] 0.3636364 1.0000000  1.2222222
## [3] 0.3636364 0.4444444  1.2222222
## [4] 0.3636364 1.0000000  1.0000000
## [5] 0.3636364 0.8000000  0.9777778
## [6] 0.3636364 0.4444444  0.9777778
## [7] 0.5454545 1.0000000  1.0000000
## [8] 0.5454545 0.8571429  1.0476190
## [9] 0.5454545 0.6666667  1.0476190
inspect(sort(guize,by = "lift"))
##     lhs                                       rhs                 
## [1] {age=(75,85],outSC=Severe-Last}        => {sex=M}             
## [2] {sex=M,outSC=Severe-Last}              => {age=(75,85]}       
## [3] {diseaPH= 4,outSC=Severe-Last}         => {sex=M}             
## [4] {sex=M,outSC=Severe-Last}              => {diseaPH= 4}        
## [5] {age=(75,85],sex=M}                    => {outSC=Severe-Last} 
## [6] {illnessday=(25,35],sex=M}             => {outSC=Severe-Last} 
## [7] {sex=M,diseaPH= 4}                     => {outSC=Severe-Last} 
## [8] {illnessday=(25,35],outSC=Severe-Last} => {sex=M}             
## [9] {sex=M,outSC=Severe-Last}              => {illnessday=(25,35]}
##     support   confidence lift     
## [1] 0.3636364 1.0000000  1.2222222
## [2] 0.3636364 0.4444444  1.2222222
## [3] 0.5454545 0.8571429  1.0476190
## [4] 0.5454545 0.6666667  1.0476190
## [5] 0.3636364 1.0000000  1.0000000
## [6] 0.3636364 1.0000000  1.0000000
## [7] 0.5454545 1.0000000  1.0000000
## [8] 0.3636364 0.8000000  0.9777778
## [9] 0.3636364 0.4444444  0.9777778
## 这些是发现的规则,提升度lift大于1的规则是有意义的规则
plot(guize,method = "graph")