We solved the optimal assortment problem if the customer selects under each of the 4 MNL-CE models. The results generated have two sets of information:
Read in the data files to data frames
Here we summarize the results using descriptive statistics
## MNL_CE1l MNL_CE1nl MNL_CE2l MNL_CE2nl
## Min. : 14.00 Min. : 7.00 Min. :20.0 Min. :20.00
## 1st Qu.: 59.00 1st Qu.:14.00 1st Qu.:40.0 1st Qu.:40.00
## Median : 70.00 Median :17.00 Median :60.0 Median :40.00
## Mean : 68.44 Mean :16.43 Mean :53.2 Mean :38.81
## 3rd Qu.: 79.00 3rd Qu.:20.00 3rd Qu.:60.0 3rd Qu.:40.00
## Max. :100.00 Max. :29.00 Max. :80.0 Max. :40.00
## MNL_CE1l MNL_CE1nl MNL_CE2l
## Min. :0.0001831 Min. :0.0009119 Min. :0.0001738
## 1st Qu.:0.0002775 1st Qu.:0.0009149 1st Qu.:0.0002342
## Median :0.0003729 Median :0.0010221 Median :0.0003183
## Mean :0.0004440 Mean :0.0012390 Mean :0.0003824
## 3rd Qu.:0.0005008 3rd Qu.:0.0013604 3rd Qu.:0.0004325
## Max. :0.0042023 Max. :0.0063336 Max. :0.0034588
## MNL_CE2nl
## Min. :0.0003276
## 1st Qu.:0.0003812
## Median :0.0004905
## Mean :0.0005770
## 3rd Qu.:0.0006516
## Max. :0.0040929
Our aim is to understand the distribution of assortment sized for all users under the 4 MNL-CE models.
For the scatter plots:
Black = MNL-CE1l
Orange = MNL-CE1nl
Blue = MNL-CE2l
Red = MNL-CE2nl
## Boxplots
boxplot(Datanumbertorec[c(-1)])
boxplot(Datanochoice[c(-1)])